Modern Command Line
Applications with Scala Native

Anton Sviridov

London, 2025

Table of contents

N N O A

Posts tagged with Iscala—native

Ab out me Calling Scala Native from Java using FFM 2025-02-16

https://blog.indoorvivants.com Let's point Java's newfangled foreign function and memory interface at a C
"""""""""""""""""""""""""""" portal into a Scala Native implementation. Zendaya meme will help explain.

» Worked with Scala since 2014

= Advocated for Scala everywhere for Calling Java from Scala Native via JNI 2025-02-0s

If you like suffering and have some Java libraries you just can't live without,

years your Scala Native application

» Maintainer and contributor to Scala

Native ecosystem, the compiler, tools, Simple anti-toddler game with Scala Native and F

To save my Slack and Discord from messages sent by a toddler, | need an ¢

and libraries software. Let's build one with Raylib and Scala Native.

= Run a scala-centric blog

Github: keynmol Scalg Natlye and SW|ft: building Twoth MagOS a
-------------- Let's build a Swift Ul (MacOS) client app for Twotm8, using both Swift and

Twotm8 (p.4): Building the backend 2022-03-06

.................................. Armed with HTTP definitions and Postgres bindings, we build out the back

https://github.com/keynmol
https://twitter.com/velvetbaldmime
https://bsky.app/profile/indoorvivants.com
https://blog.indoorvivants.com/

Scala Native

https://scala-native.org

= Plugin to Scala compiler

= Build tools integrations

= Build native binaries, shared, and static
libraries

= Interop with C libraries

= Compile C/C++/Assembly code alongside your
Scala code

= Implements a large chunk of JDK-compatible

APIs for cross-compilation

https://scala-native.org/

Getting started with Scala Native

= Install Clang and Scala CLI

using scala 3.7
using platform scala-native
using dep org.scala-lang.modules::scala-parallel-collections::1.2.0

import collection.parallel.CollectionConverters.*

@main def hello =
Vector('L", "S", "U", "G").par.foreach(println(_))

= Package with scala-cli package . -f -o ./hello-native
m Runwith ./hello-native
= This is a self-contained native binary

= Multi-threading

https://clang.llvm.org/
https://scala-cli.virtuslab.org/

Motivation for this talk

Multiple times a day I would run this incantation in order to test an
idea, respond to a discord message, prepare a post, etc.

go into a temp folder
cd $(mktemp -d) && \
create scala file
touch test.scala && \
setup Metals configuration
scala-cli setup-ide . && \
open editor
nvim test.scala

Motivation for this talk

cd $(mktemp -d touch test.scala scala-cli setup-ide . nvim test.scala

= Very inflexible

= Relies on shell history

= Results are lost almost immediately
= No templates

= No search

= Can’t be integrated into the rest of my workflow

Sniper

Fully-featured snippet management tool

> c¢d $(sniper new) & nvim .
v Snippet description (max 240 characters) Hello, LSUG!
? Select template to use »

No template

» scala3
C
leetcode
sht-scala3-native
scala3-macro

Sniper
Fully-featured snippet management tool

> sniper open
? Select a snippet you want to see »
» 72: Trying to get C macros values using libclang
71: Bindings for SDL3
68: Testing metals indexing
67: Testing Math multiplyHigh on Scala Native for Andriy Plokhotnyuk

66: Testing embed resources filters for scala native
65: Testing Metals on 2.13 vs 3
64: MCP proxy for Metals, STDIN to SSE
63: Demonstrating union encoding with bindgen for https://github.com/scala-native/scala-native/issues/4339
61: Testing the for comprehension desugaring
4 60: reproduction for inline given and nothing parameter in summon

Sniper

Fully-featured snippet management tool

= Manages folders automatically = Embedded MCP server
= Templates and presets = Alfred integration
= Moderately interactive CLI = Shell completions

= Trigram code search = TOML configuration

Choose your fighter

Unix approach Kitchen sink approach
A selection of very small, self- Single tool to do everything, hiding
contained tools, providing minimal separate tasks and other CLI tools

functionality, designed to be combined invocations under the hood
together via text-based interface to

achieve tasks kubectl , scala-cli, go,

clang, etc.
ps , cat, Ls etc.

Choose your fighter

Sniper follows the kitchen sink approach.

Unix approach Kitchen sink approach
A selection of very small, self- Single tool to do everything, hiding
contained tools, providing minimal separate tasks and other CLI tools

functionality, designed to be combined invocations under the hood
together via text-based interface to

achieve tasks kubectl , scala-cli, go,

clang, etc.
ps , cat, Ls etc.

Modern CLI covenants

Modern CLI covenants

= Use standard directories (https://dirs.dev/) for config and data

Modern CLI covenants

= Use standard directories (https://dirs.dev/) for config and data

Bootstrap everything on first invocation

Modern CLI covenants

= Use standard directories (https://dirs.dev/) for config and data

Bootstrap everything on first invocation
Respect NO_COLORS (https://no-color.org/)

Modern CLI covenants

= Use standard directories (https://dirs.dev/) for config and data
= Bootstrap everything on first invocation
= Respect NO COLORS (https://no-color.org/)

= Use nested subcommands in CLI arguments and provide shell completions

Modern CLI covenants

= Use standard directories (https://dirs.dev/) for config and data

= Bootstrap everything on first invocation

= Respect NO COLORS (https://no-color.org/)

= Use nested subcommands in CLI arguments and provide shell completions

m Prefer self-contained binaries

Modern CLI covenants

= Use standard directories (https://dirs.dev/) for config and data

= Bootstrap everything on first invocation

= Respect NO COLORS (https://no-color.org/)

= Use nested subcommands in CLI arguments and provide shell completions
= Prefer self-contained binaries

= Confirmations for destructive actions

Modern CLI covenants

= Use standard directories (https://dirs.dev/) for config and data

= Bootstrap everything on first invocation

= Respect NO COLORS (https://no-color.org/)

= Use nested subcommands in CLI arguments and provide shell completions
= Prefer self-contained binaries

= Confirmations for destructive actions

= Use interactive terminal features very sparingly

Modern CLI covenants

= Use standard directories (https://dirs.dev/) for config and data

= Bootstrap everything on first invocation

= Respect NO COLORS (https://no-color.org/)

= Use nested subcommands in CLI arguments and provide shell completions
= Prefer self-contained binaries

= Confirmations for destructive actions

= Use interactive terminal features very sparingly

= Use known configuration formats, don't invent your own

Modern CLI covenants

= Use standard directories (https://dirs.dev/) for config and data

= Bootstrap everything on first invocation

= Respect NO COLORS (https://no-color.org/)

= Use nested subcommands in CLI arguments and provide shell completions
= Prefer self-contained binaries

= Confirmations for destructive actions

= Use interactive terminal features very sparingly

= Use known configuration formats, don't invent your own

= Expect data to go out of sync and give user the power to fix it

Modern CLI covenants

= Use standard directories (https://dirs.dev/) for config and data

= Bootstrap everything on first invocation

= Respect NO COLORS (https://no-color.org/)

= Use nested subcommands in CLI arguments and provide shell completions
= Prefer self-contained binaries

= Confirmations for destructive actions

= Use interactive terminal features very sparingly

= Use known configuration formats, don't invent your own

= Expect data to go out of sync and give user the power to fix it

= Expect and provide integration points

Modern CLI covenants

= Use standard directories (https://dirs.dev/) for config and data

= Bootstrap everything on first invocation

= Respect NO COLORS (https://no-color.org/)

= Use nested subcommands in CLI arguments and provide shell completions
= Prefer self-contained binaries

= Confirmations for destructive actions

= Use interactive terminal features very sparingly

= Use known configuration formats, don't invent your own

= Expect data to go out of sync and give user the power to fix it

= Expect and provide integration points

There are many more soft and hard rules in order to be a useful and respectful guest on user's
machine

Components of a modern CLI

= Argument parsing

= Configuration management
= Terminal interactivity

= Data storage

= Al slop for likes

= Integration with other tools

Ecosystem building blocks

CLI parsing with decline-derive

https://github.com/indoorvivants/decline-derive

using dep com.indoorvivants::decline-derive::0.3.1
import decline_derive.*

enum Sub derives CommandApplication:
case A(x: Int)
case B(y: Option[String])

enum Command derives CommandApplication:
@Help("Hello, LSUG!") case Hello(@Short(''n") name: String)
case Test(a: Sub)

@main def runCommand(args: String*): Unit =
println(CommandApplication.parseOrExit[Command](args))

https://github.com/indoorvivants/decline-derive

CLI parsing with decline-derive

https://github.com/indoorvivants/decline-derive

using dep com.indoorvivants::decline-derive::0.3.1

import decline_derive.*

https://github.com/indoorvivants/decline-derive

CLI parsing with decline-derive

https://github.com/indoorvivants/decline-derive

enum Sub derives CommandApplication:

enum Command derives CommandApplication:

https://github.com/indoorvivants/decline-derive

CLI parsing with decline-derive

https://github.com/indoorvivants/decline-derive

@Help("Hello, LSUG!") case Hello(@Short(''n") name: String)

https://github.com/indoorvivants/decline-derive

CLI parsing with decline-derive

https://github.com/indoorvivants/decline-derive

case Test(a: Sub)

https://github.com/indoorvivants/decline-derive

CLI parsing with decline-derive

https://github.com/indoorvivants/decline-derive

println(CommandApplication.parseOrExit[Command](args))

https://github.com/indoorvivants/decline-derive

Configuration with toml-scala

https://github.com/indoorvivants/toml-scala

Resurrected from the dead, now with Scala 3 support thanks to community.

using dep com.indoorvivants::toml::0.3.0
import toml.*
case class Config(name: String, age: Int) derives Codec

@main def parse_toml =
val string =

name = "John Doe"
age = 30

println(Toml .parseAs[Config](string))

https://github.com/indoorvivants/toml-scala

Configuration with toml-scala

https://github.com/indoorvivants/toml-scala

Resurrected from the dead, now with Scala 3 support thanks to community.

using dep com.indoorvivants::toml::0.3.0

import toml.*

https://github.com/indoorvivants/toml-scala

Configuration with toml-scala

https://github.com/indoorvivants/toml-scala

Resurrected from the dead, now with Scala 3 support thanks to community.

case class Config(name: String, age: Int) derives Codec

https://github.com/indoorvivants/toml-scala

Configuration with toml-scala

https://github.com/indoorvivants/toml-scala

Resurrected from the dead, now with Scala 3 support thanks to community.

val string =

name = "John Doe"
age = 30

println(Toml .parseAs[Config](string))

https://github.com/indoorvivants/toml-scala

Terminal interactivity with cue4s

https://github.com/neandertech/cue4s

using dep tech.neander::cue4s::0.0.9
import cue4s.*

@main def prompts =
Prompts.sync.use: prompts =>
val name = prompts.text('What is your name?").getOrThrow
val youOK = prompts.confirm(s'Are you ok, $name?").getOrThrow
if !youOK then sys.error('You get better mate, come back later")

Available on JVM, JS, and Native

https://github.com/neandertech/cue4s

Terminal interactivity with cue4s

https://github.com/neandertech/cue4s

using dep tech.neander::cue4s::0.0.9

import cue4s.*

Available on JVM, JS, and Native

https://github.com/neandertech/cue4s

Terminal interactivity with cue4s

https://github.com/neandertech/cue4s

val name = prompts.text('What is your name?").getOrThrow
val youOK = prompts.confirm(s'Are you ok, $name?").getOrThrow

Available on JVM, JS, and Native

https://github.com/neandertech/cue4s

Terminal interactivity with cue4s

> scli run cue4s.scala

v What 1s your name? Anton

v Are you ok, Anton? no

Exception in thread "main" java.lang.RuntimeException: You get better mate, come back later
at scala.sys.package$.error(package.scala:27)
at cue4s$package$.prompts$$anonfun$i(cuess.scala:9)

at scala.runtime.function.JProcedurel.apply(JProcedurel.java:15)
at scala.runtime.function.JProcedurel.apply(JProcedurel.java:10)
at cue4s.SyncPromptsBuilder.use(SyncPrompts.scala:32)

at cue4s$package$.prompts(cuess.scala:6)

at prompts.main(cue4s.scala:5)

Sqlite with Magnum and JDBC reimplementation
https://github.com/lolgab/scala-native-jdbc

= Lorenzo Gabriele is heroically reimplementing JDBC for Scala Native, and publishing forked database
libraries that work with it - Magnum and ScalaSql included, for Sqlite and DuckDB.

= Implementation is incomplete (JDBC is huge!) but you can already build real stuff with it
= The Scala library ships with sqlite3 embedded, so you don’t need to install any dependencies

= Excellent opportunity to contribute to the ecosystem, highest ratio of impact to effort

https://github.com/lolgab/scala-native-jdbc

Sqlite with Magnum and JDBC reimplementation

https://github.com/lolgab/scala-native-jdbc

using dep com.github.lolgab: :magnum::1.3.1
using dep com.github.lolgab::scala-native-jdbc-sqlite::0.0.3
using platform scala-native

import com.augustnagro.magnum.*

@Table(SqgliteDbType, SqlNameMapper.CamelToSnakeCase)
case class Vegetable(

@lId id: Long,

description: String
) derives DbCodec

@main def hello_jdbc =
val sqglLogger = new SqlLogger:
override def exceptionMsg(exceptionEvent: SqlExceptionEvent): String =
override def log(successEvent: SqlSuccessEvent): Unit = ()

https://github.com/lolgab/scala-native-jdbc

Sqlite with Magnum and JDBC reimplementation

https://github.com/lolgab/scala-native-jdbc

using dep com.github.lolgab: :magnum::1.3.1
using dep com.github.lolgab::scala-native-jdbc-sqlite::0.0.3
using platform scala-native

https://github.com/lolgab/scala-native-jdbc

Sqlite with Magnum and JDBC reimplementation

https://github.com/lolgab/scala-native-jdbc

@Table(SqliteDbType, SglNameMapper.CamelToSnakeCase)
case class Vegetable(

@ld id: Long,

description: String
) derives DbCodec

https://github.com/lolgab/scala-native-jdbc

Sqlite with Magnum and JDBC reimplementation

https://github.com/lolgab/scala-native-jdbc

val sqgllLogger = new SqllLogger:
override def exceptionMsg(exceptionEvent: SqlExceptionEvent): String =
override def log(successEvent: SqlSuccessEvent): Unit = ()

val dataSource = new org.sqlite.SQLiteDataSource()
dataSource.setUrl(s"jdbc:sqlite:./vegetables.db")

https://github.com/lolgab/scala-native-jdbc

Sqlite with Magnum and JDBC reimplementation

https://github.com/lolgab/scala-native-jdbc

connect(Transactor(dataSource, sqlLogger)):
sqgl
CREATE TABLE IF NOT EXISTS vegetable (
id INTEGER PRIMARY KEY,
description TEXT NOT NULL
DK

.update.run()

https://github.com/lolgab/scala-native-jdbc

Sqlite with Magnum and JDBC reimplementation

https://github.com/lolgab/scala-native-jdbc

val repo = Repo[Vegetable, Vegetable, Long]
repo.insert(Vegetable(5, "cucumber'"))
println(repo.£findById(5))

https://github.com/lolgab/scala-native-jdbc

Alfred integration

= Alfred is the OG productivity app

= It has workflows that can invoke commands, and rudimentary JSON protocol

= [t’s JSON, so your choices in Scala are in the low hundreds

> sniper alfred prepare 'n" | jq > sniper alfred prepare '"n scala3 Hello, LSUG" | jq
items items

title scala3 title Create snippet named "Hello, LSUG' using template ‘scala3’
arg arg new:scala3:Hello, LSUG
valid false valid true
autocomplete new scala3
title c
arg

valid false
autocomplete new c

Alfred integration

& Cammand lina anp

sniper ¢ SIGWINCH| >

—/ Trying out SIGWINCH in Scala Native for terminal resizing 381

def scalanative_sigwinch(): Int = extern

3 Trying out SIGWINCH in Scala Native for terminal resizing

val ws = stackalloc[WinSize] ()

DBC

’ Trying out SIGWINCH in Scala Native for terminal resizing

. def scalanative_get_window_size(ws: Ptr[WinSize]): Int = extern

—[Testing the for comprehension desugaring
def forComprehensionBenchmark(): Option[Int] =

—[Circular buffer implemented as a Map[Long, A] %5

val evict = curldx - window

T J bassazii § \J\.'II(.U ¥yviIunia nnusl ld

Alfred integration

= All the logic is in the Sniper itself
= Alfred’s workflow is a pretty static XML file
= Embed it!

using resourceDir ./resources
using nativeEmbedResources

And then dump it directly out of the CLI:

sniper alfred workflow > Sniper.alfredworkflow open Sniper.alfredworkflow

Alfred will open and install the workflow!

Model Context Protocol server with mcp

https://github.com/indoorvivants/mcp

using dep com.indoorvivants: :mcp-quick::0.1.3
import mcp.*

@main def hello =
val mcp = MCPBuilder
.create()
.handle(initialize): req =>
InitializeResult(
capabilities =
ServerCapabilities(tools = Some(ServerCapabilities.Tools())),
protocolVersion = req.protocolVersion,

serverInfo = Implementation('scala-mcp", "0.0.1")
)
.run(SyncTransport.default)
end hello

To integrate with Claude, Cursor, etc.

https://github.com/indoorvivants/mcp

o | recently did some C work in my snippets — what was it?

'

o

Use “shippets” to hint to Claude to use
MCP

check your snippets to see what C work vou've been doing recently.

shiper_list

I can see a few snippets that involve C work. Let me search for C-related content to get more

details:

4% sniper_code_search \
- _ Tool use
Let me check the specific snippets that mention C files or C-related work: /

&

&

&

2]

sniper_read_file

shiper_read_file

sniper_read_file

sniper_read_file

Based on your snippets, vou've been working on two main C-related projects recently:

1.

Snippet #63: "Demonstrating union encoding with bindgen" - This was for a Scala
Native issue (#4339). You created a simple C header file { test.h) that demonstrates union

encoding with a binary tree structure containing unions. The header defines:
- A buTRreeNode_t struct with asingle uint8_t field Useful summary
+ A bwTRee structwith aunion that can hold eithera uint64_t % or struct
bwTReeMode_t sk

Distribution

Distribution

= Distributing self-contained binaries is very easy compared to JVM
applications
= Usually there are two problems:
1. How to build for all platforms
2. Where to put the binaries
3. What to do with platforms that insist on dynamic linking and

building from source.

Distribution

= Distributing self-contained binaries is very easy compared to JVM

applications
= Usually there are two problems:
1. How to build for all platforms
2. Where to put the binaries
3. What to do with platforms that insist on dynamic linking and

building from source. Put fingers in your ears, scream, and wait

for them to go away

Distribute via Github

= At the moment Github Actions is hard to beat
= Free runners for all major OSes and architectures

= Automatic releases, uploading binaries to release assets

Use my template to get started:

https://github.com/indoorvivants/scala-native-binary-template

Includes the entire release pipeline for all supported platforms.

Platform Intel Armo64
Linux 4 4
MacOS v 4

Windows v) ¢

https://github.com/indoorvivants/scala-native-binary-template

Distribute via Github

Use my template to get started:

https://github.com/indoorvivants/scala-native-binary-template

https://github.com/indoorvivants/scala-native-binary-template

Releases / v0.0.2

v0.0.2 Compare + £/ U

g keynmol released this 35 minutes ago © v0.0.2 -0 0448326 &

Update ci.yml

v Assets &
l'fi:‘ﬂsni|:uer-a|alr~1:hli:‘utl-a|:||:|he-|:l.£|r1.-.rin sha256:2ed399657158.. [14.8 MB 4 minutes ago
rf"fJsni|:uer-z|zm::hli:‘--’-l-;:u:r-linmv: sha256:61d@s50aeade.. [15.9 MB 4 minutes ago
ﬁﬁsniper-xﬂﬁ_ﬁﬂ-apple-darwirl sha256:13c71f480e68.. (O] 14 MB 4 minutes ago
@sniper-xﬂﬁ_ﬁﬂ-pn-linux sha256:97085c830992.. (O 16.1 MB 4 minutes ago

Distribute via Coursier

Coursier is a dependency manager for Scala that powers Mill, SBT, and Scala CLI
It has a lesser known feature for distributing JVM and Native applications
Your app has to be published to Maven Central or a compatible repository

There are built-in registries at https://github.com/coursier/apps/ for established

applications

You can define "channels" for your app distribution in JSON format

https://github.com/coursier/apps/

Distribute via Coursier
i.json

sniper": {
repositories': ["central'],
dependencies': ["com.indoorvivants:sniper_ native@.5_ 3:latest.stable"],
LauncherType": "scala-native',
prebuiltBinaries": {
x86_64-pc-linux": "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-x86_64-
x86_64-pc-win32": "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-x86_ 64-
x86_64-apple-darwin': "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-x86
aarché64-apple-darwin': "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-aa
3
s

Deploy this file somewhere, e.g. https://cs.indoorvivants.com/i.json ,and thenrun:

cs install sniper --channel

https://cs.indoorvivants.com/i.json

Distribute via Coursier

i.json

dependencies com. indoorvivants:sniper_native@.5 3:latest.stable

Deploy this file somewhere, e.g. https://cs.indoorvivants.com/i.json ,and thenrun:

cs install sniper --channel
https://cs.indoorvivants.com/i.json

Distribute via Coursier

i.json

x86_64-pc-linux": "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-x86_64-
x86_64-pc-win32": "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-x86_ 64-
x86_64-apple-darwin': "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-x86
aarché64-apple-darwin': "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-aa

Deploy this file somewhere, e.g. https://cs.indoorvivants.com/i.json ,and thenrun:

cs install sniper --channel

https://cs.indoorvivants.com/i.json

Distribute via homebrew

= Homebrew is the de-facto package manager for MacOS, and is gaining traction
on Linux

=]t has native support for "taps" - specially named Github repositories where
you can put your "formulas”

= Mine is at https://github.com/indoorvivants/homebrew-tap

brew install indoorvivants/tap/sniper

https://github.com/indoorvivants/homebrew-tap

Distribute via homebrew

= Formulas are defined in Ruby
= We can use pre-defined binaries, or build from source

= You canrun the formula directly brew install ./sniper.rb && brew
test sniper

class Sniper Formula
desc "Snippet management tool

resource '"binary" do
on_arm do
on_macos do
url "https://github.com/keynmol/sniper/releases/download/v#{_ version}/sniper-aarché
end
on_linux do
url "https://github.com/keynmol/sniper/releases/download/v#{_ version}/sniper-aarché

end

=

Closing thoughts

It’s still Scala after all

=]t is remarkable that the entire project could well be a Scala JVM
application

= Just change some dependencies, and remove the single "native" line:

val isTTY = scalanative.posix.unistd.isatty(l) == 1

= [t is possible to do so much with the libraries and JDK implementations
that are already available

= The ecosystem is rich, growing, and yearns for users

Conclusion

= The best time to start building CLIs in Scala Native is now
= Don’t sit around waiting for something to be production ready - you are the
production, you make that call
= Ecosystem is rich, growing, and yearns for users
= Scala Native itself desperately needs contributors:
= Make optimiser much, much faster
= We need incremental builds
=]DK classes missing (VERY IMPORTANT NOTE)

https://scala-native.org/en/stable/contrib/contributing.html#very-important-notice-about-javalib

Happy building!

Scala Native https ://scala-native. org/en/stable/

Ask your company to sponsor Scala Center:

https://scala.epfl.ch/corporate-membership.html

https://scala-native.org/en/stable/
https://github.com/indoorvivants/sniper
https://blog.indoorvivants.com/
https://slides.indoorvivants.com/clis-with-scala-native
https://scala.epfl.ch/corporate-membership.html

