
Modern Command Line

Applications with Scala Native
Anton Sviridov

London, 2025

Table of contents

1. About me

2. Scala Native

3. Motivation for this talk

4. Sniper

5. Sniper

6. Modern CLI covenants

7. Components of a modern CLI

8. Distribution

9. Closing thoughts

About me

Worked with Scala since 2014

Advocated for Scala everywhere for

years

Maintainer and contributor to Scala

Native ecosystem, the compiler, tools,

and libraries

Run a scala-centric blog

Github: keynmol

Twitter: velvetbaldmime

Bluesky: @indoorvivants.com

https://blog.indoorvivants.com

https://github.com/keynmol
https://twitter.com/velvetbaldmime
https://bsky.app/profile/indoorvivants.com
https://blog.indoorvivants.com/

Scala Native

Plugin to Scala compiler

Build tools integrations

Build native binaries, shared, and static

libraries

Interop with C libraries

Compile C/C++/Assembly code alongside your

Scala code

Implements a large chunk of JDK-compatible

APIs for cross-compilation

https://scala-native.org

https://scala-native.org/

Getting started with Scala Native
Install Clang and Scala CLI

Package with scala-cli package . -f -o ./hello-native

Run with ./hello-native

This is a self-contained native binary

Multi-threading

//> using scala 3.7

//> using platform scala-native

//> using dep org.scala-lang.modules::scala-parallel-collections::1.2.0

import collection.parallel.CollectionConverters.*

@main def hello =

 Vector("L", "S", "U", "G").par.foreach(println(_))

https://clang.llvm.org/
https://scala-cli.virtuslab.org/

Motivation for this talk
Multiple times a day I would run this incantation in order to test an

idea, respond to a discord message, prepare a post, etc.

go into a temp folder

cd $(mktemp -d) && \

 # create scala file

 touch test.scala && \

 # setup Metals configuration

 scala-cli setup-ide . && \

 # open editor

 nvim test.scala

Motivation for this talk

Very inflexible

Relies on shell history

Results are lost almost immediately

No templates

No search

Can’t be integrated into the rest of my workflow

cd $(mktemp -d) && touch test.scala && scala-cli setup-ide . && nvim test.scala

Sniper
Fully-featured snippet management tool

Sniper
Fully-featured snippet management tool

Sniper

Manages folders automatically

Templates and presets

Moderately interactive CLI

Trigram code search

Embedded MCP server

Alfred integration

Shell completions

TOML configuration

Fully-featured snippet management tool

Choose your fighter

Unix approach

A selection of very small, self-

contained tools, providing minimal

functionality, designed to be combined

together via text-based interface to

achieve tasks

ps , cat , ls etc.

Kitchen sink approach

Single tool to do everything, hiding

separate tasks and other CLI tools

invocations under the hood

kubectl , scala-cli , go ,

clang , etc.

Choose your fighter
Sniper follows the kitchen sink approach.

Unix approach

A selection of very small, self-

contained tools, providing minimal

functionality, designed to be combined

together via text-based interface to

achieve tasks

ps , cat , ls etc.

Kitchen sink approach

Single tool to do everything, hiding

separate tasks and other CLI tools

invocations under the hood

kubectl , scala-cli , go ,

clang , etc.

Modern CLI covenants

Modern CLI covenants

Use standard directories (https://dirs.dev/) for config and data

Modern CLI covenants

Use standard directories (https://dirs.dev/) for config and data

Bootstrap everything on first invocation

Modern CLI covenants

Use standard directories (https://dirs.dev/) for config and data

Bootstrap everything on first invocation

Respect NO_COLORS (https://no-color.org/)

Modern CLI covenants

Use standard directories (https://dirs.dev/) for config and data

Bootstrap everything on first invocation

Respect NO_COLORS (https://no-color.org/)

Use nested subcommands in CLI arguments and provide shell completions

Modern CLI covenants

Use standard directories (https://dirs.dev/) for config and data

Bootstrap everything on first invocation

Respect NO_COLORS (https://no-color.org/)

Use nested subcommands in CLI arguments and provide shell completions

Prefer self-contained binaries

Modern CLI covenants

Use standard directories (https://dirs.dev/) for config and data

Bootstrap everything on first invocation

Respect NO_COLORS (https://no-color.org/)

Use nested subcommands in CLI arguments and provide shell completions

Prefer self-contained binaries

Confirmations for destructive actions

Modern CLI covenants

Use standard directories (https://dirs.dev/) for config and data

Bootstrap everything on first invocation

Respect NO_COLORS (https://no-color.org/)

Use nested subcommands in CLI arguments and provide shell completions

Prefer self-contained binaries

Confirmations for destructive actions

Use interactive terminal features very sparingly

Modern CLI covenants

Use standard directories (https://dirs.dev/) for config and data

Bootstrap everything on first invocation

Respect NO_COLORS (https://no-color.org/)

Use nested subcommands in CLI arguments and provide shell completions

Prefer self-contained binaries

Confirmations for destructive actions

Use interactive terminal features very sparingly

Use known configuration formats, don't invent your own

Modern CLI covenants

Use standard directories (https://dirs.dev/) for config and data

Bootstrap everything on first invocation

Respect NO_COLORS (https://no-color.org/)

Use nested subcommands in CLI arguments and provide shell completions

Prefer self-contained binaries

Confirmations for destructive actions

Use interactive terminal features very sparingly

Use known configuration formats, don't invent your own

Expect data to go out of sync and give user the power to fix it

Modern CLI covenants

Use standard directories (https://dirs.dev/) for config and data

Bootstrap everything on first invocation

Respect NO_COLORS (https://no-color.org/)

Use nested subcommands in CLI arguments and provide shell completions

Prefer self-contained binaries

Confirmations for destructive actions

Use interactive terminal features very sparingly

Use known configuration formats, don't invent your own

Expect data to go out of sync and give user the power to fix it

Expect and provide integration points

Modern CLI covenants

Use standard directories (https://dirs.dev/) for config and data

Bootstrap everything on first invocation

Respect NO_COLORS (https://no-color.org/)

Use nested subcommands in CLI arguments and provide shell completions

Prefer self-contained binaries

Confirmations for destructive actions

Use interactive terminal features very sparingly

Use known configuration formats, don't invent your own

Expect data to go out of sync and give user the power to fix it

Expect and provide integration points

There are many more soft and hard rules in order to be a useful and respectful guest on user's

machine

Components of a modern CLI

Argument parsing

Configuration management

Terminal interactivity

Data storage

AI slop for likes

Integration with other tools

Ecosystem building blocks

CLI parsing with decline-derive

https://github.com/indoorvivants/decline-derive

//> using dep com.indoorvivants::decline-derive::0.3.1

import decline_derive.*

enum Sub derives CommandApplication:

 case A(x: Int)

 case B(y: Option[String])

enum Command derives CommandApplication:

 @Help("Hello, LSUG!") case Hello(@Short("n") name: String)

 case Test(a: Sub)

@main def runCommand(args: String*): Unit =

 println(CommandApplication.parseOrExit[Command](args))

https://github.com/indoorvivants/decline-derive

CLI parsing with decline-derive

https://github.com/indoorvivants/decline-derive

//> using dep com.indoorvivants::decline-derive::0.3.1

import decline_derive.*

enum Sub derives CommandApplication:

 case A(x: Int)

 case B(y: Option[String])

enum Command derives CommandApplication:

 @Help("Hello, LSUG!") case Hello(@Short("n") name: String)

 case Test(a: Sub)

@main def runCommand(args: String*): Unit =

 println(CommandApplication.parseOrExit[Command](args))

https://github.com/indoorvivants/decline-derive

CLI parsing with decline-derive

https://github.com/indoorvivants/decline-derive

enum Sub derives CommandApplication:

enum Command derives CommandApplication:

//> using dep com.indoorvivants::decline-derive::0.3.1

import decline_derive.*

 case A(x: Int)

 case B(y: Option[String])

 @Help("Hello, LSUG!") case Hello(@Short("n") name: String)

 case Test(a: Sub)

@main def runCommand(args: String*): Unit =

 println(CommandApplication.parseOrExit[Command](args))

https://github.com/indoorvivants/decline-derive

CLI parsing with decline-derive

https://github.com/indoorvivants/decline-derive

 @Help("Hello, LSUG!") case Hello(@Short("n") name: String)

//> using dep com.indoorvivants::decline-derive::0.3.1

import decline_derive.*

enum Sub derives CommandApplication:

 case A(x: Int)

 case B(y: Option[String])

enum Command derives CommandApplication:

 case Test(a: Sub)

@main def runCommand(args: String*): Unit =

 println(CommandApplication.parseOrExit[Command](args))

https://github.com/indoorvivants/decline-derive

CLI parsing with decline-derive

https://github.com/indoorvivants/decline-derive

 case Test(a: Sub)

//> using dep com.indoorvivants::decline-derive::0.3.1

import decline_derive.*

enum Sub derives CommandApplication:

 case A(x: Int)

 case B(y: Option[String])

enum Command derives CommandApplication:

 @Help("Hello, LSUG!") case Hello(@Short("n") name: String)

@main def runCommand(args: String*): Unit =

 println(CommandApplication.parseOrExit[Command](args))

https://github.com/indoorvivants/decline-derive

CLI parsing with decline-derive

https://github.com/indoorvivants/decline-derive

 println(CommandApplication.parseOrExit[Command](args))

//> using dep com.indoorvivants::decline-derive::0.3.1

import decline_derive.*

enum Sub derives CommandApplication:

 case A(x: Int)

 case B(y: Option[String])

enum Command derives CommandApplication:

 @Help("Hello, LSUG!") case Hello(@Short("n") name: String)

 case Test(a: Sub)

@main def runCommand(args: String*): Unit =

https://github.com/indoorvivants/decline-derive

Configuration with toml-scala

https://github.com/indoorvivants/toml-scala

Resurrected from the dead, now with Scala 3 support thanks to community.

//> using dep com.indoorvivants::toml::0.3.0

import toml.*

case class Config(name: String, age: Int) derives Codec

@main def parse_toml =

 val string =

 """

 name = "John Doe"

 age = 30

 """

 println(Toml.parseAs[Config](string))

https://github.com/indoorvivants/toml-scala

Configuration with toml-scala

https://github.com/indoorvivants/toml-scala

Resurrected from the dead, now with Scala 3 support thanks to community.

//> using dep com.indoorvivants::toml::0.3.0

import toml.*

case class Config(name: String, age: Int) derives Codec

@main def parse_toml =

 val string =

 """

 name = "John Doe"

 age = 30

 """

 println(Toml.parseAs[Config](string))

https://github.com/indoorvivants/toml-scala

Configuration with toml-scala

https://github.com/indoorvivants/toml-scala

Resurrected from the dead, now with Scala 3 support thanks to community.

case class Config(name: String, age: Int) derives Codec

//> using dep com.indoorvivants::toml::0.3.0

import toml.*

@main def parse_toml =

 val string =

 """

 name = "John Doe"

 age = 30

 """

 println(Toml.parseAs[Config](string))

https://github.com/indoorvivants/toml-scala

Configuration with toml-scala

https://github.com/indoorvivants/toml-scala

Resurrected from the dead, now with Scala 3 support thanks to community.

 val string =

 """

 name = "John Doe"

 age = 30

 """

 println(Toml.parseAs[Config](string))

//> using dep com.indoorvivants::toml::0.3.0

import toml.*

case class Config(name: String, age: Int) derives Codec

@main def parse_toml =

https://github.com/indoorvivants/toml-scala

Terminal interactivity with cue4s

https://github.com/neandertech/cue4s

Available on JVM, JS, and Native

//> using dep tech.neander::cue4s::0.0.9

import cue4s.*

@main def prompts =

 Prompts.sync.use: prompts =>

 val name = prompts.text("What is your name?").getOrThrow

 val youOK = prompts.confirm(s"Are you ok, $name?").getOrThrow

 if !youOK then sys.error("You get better mate, come back later")

https://github.com/neandertech/cue4s

Terminal interactivity with cue4s

https://github.com/neandertech/cue4s

Available on JVM, JS, and Native

//> using dep tech.neander::cue4s::0.0.9

import cue4s.*

@main def prompts =

 Prompts.sync.use: prompts =>

 val name = prompts.text("What is your name?").getOrThrow

 val youOK = prompts.confirm(s"Are you ok, $name?").getOrThrow

 if !youOK then sys.error("You get better mate, come back later")

https://github.com/neandertech/cue4s

Terminal interactivity with cue4s

https://github.com/neandertech/cue4s

Available on JVM, JS, and Native

 val name = prompts.text("What is your name?").getOrThrow

 val youOK = prompts.confirm(s"Are you ok, $name?").getOrThrow

//> using dep tech.neander::cue4s::0.0.9

import cue4s.*

@main def prompts =

 Prompts.sync.use: prompts =>

 if !youOK then sys.error("You get better mate, come back later")

https://github.com/neandertech/cue4s

Terminal interactivity with cue4s

Sqlite with Magnum and JDBC reimplementation

https://github.com/lolgab/scala-native-jdbc

Lorenzo Gabriele is heroically reimplementing JDBC for Scala Native, and publishing forked database

libraries that work with it – Magnum and ScalaSql included, for Sqlite and DuckDB.

Implementation is incomplete (JDBC is huge!) but you can already build real stuff with it

The Scala library ships with sqlite3 embedded, so you don’t need to install any dependencies

Excellent opportunity to contribute to the ecosystem, highest ratio of impact to effort

https://github.com/lolgab/scala-native-jdbc

Sqlite with Magnum and JDBC reimplementation

https://github.com/lolgab/scala-native-jdbc

//> using dep com.github.lolgab::magnum::1.3.1

//> using dep com.github.lolgab::scala-native-jdbc-sqlite::0.0.3

//> using platform scala-native

import com.augustnagro.magnum.*

@Table(SqliteDbType, SqlNameMapper.CamelToSnakeCase)

case class Vegetable(

 @Id id: Long,

 description: String

) derives DbCodec

@main def hello_jdbc =

 val sqlLogger = new SqlLogger:

 override def exceptionMsg(exceptionEvent: SqlExceptionEvent): String = ""

 override def log(successEvent: SqlSuccessEvent): Unit = ()

https://github.com/lolgab/scala-native-jdbc

Sqlite with Magnum and JDBC reimplementation

https://github.com/lolgab/scala-native-jdbc

//> using dep com.github.lolgab::magnum::1.3.1

//> using dep com.github.lolgab::scala-native-jdbc-sqlite::0.0.3

//> using platform scala-native

import com.augustnagro.magnum.*

@Table(SqliteDbType, SqlNameMapper.CamelToSnakeCase)

case class Vegetable(

 @Id id: Long,

 description: String

) derives DbCodec

@main def hello_jdbc =

 val sqlLogger = new SqlLogger:

 override def exceptionMsg(exceptionEvent: SqlExceptionEvent): String = ""

 override def log(successEvent: SqlSuccessEvent): Unit = ()

https://github.com/lolgab/scala-native-jdbc

Sqlite with Magnum and JDBC reimplementation

https://github.com/lolgab/scala-native-jdbc

@Table(SqliteDbType, SqlNameMapper.CamelToSnakeCase)

case class Vegetable(

 @Id id: Long,

 description: String

) derives DbCodec

//> using dep com.github.lolgab::magnum::1.3.1

//> using dep com.github.lolgab::scala-native-jdbc-sqlite::0.0.3

//> using platform scala-native

import com.augustnagro.magnum.*

@main def hello_jdbc =

 val sqlLogger = new SqlLogger:

 override def exceptionMsg(exceptionEvent: SqlExceptionEvent): String = ""

 override def log(successEvent: SqlSuccessEvent): Unit = ()

https://github.com/lolgab/scala-native-jdbc

Sqlite with Magnum and JDBC reimplementation

https://github.com/lolgab/scala-native-jdbc

 val sqlLogger = new SqlLogger:

 override def exceptionMsg(exceptionEvent: SqlExceptionEvent): String = ""

 override def log(successEvent: SqlSuccessEvent): Unit = ()

 val dataSource = new org.sqlite.SQLiteDataSource()

 dataSource.setUrl(s"jdbc:sqlite:./vegetables.db")

g (

 @Id id: Long,

 description: String

) derives DbCodec

@main def hello_jdbc =

 connect(Transactor(dataSource, sqlLogger)):

 sql"""

 CREATE TABLE IF NOT EXISTS vegetable (

 id INTEGER PRIMARY KEY,

description TEXT NOT NULL

https://github.com/lolgab/scala-native-jdbc

Sqlite with Magnum and JDBC reimplementation

https://github.com/lolgab/scala-native-jdbc

 connect(Transactor(dataSource, sqlLogger)):

 sql"""

 CREATE TABLE IF NOT EXISTS vegetable (

 id INTEGER PRIMARY KEY,

 description TEXT NOT NULL

);

 """.update.run()

q gg q gg

 override def exceptionMsg(exceptionEvent: SqlExceptionEvent): String = ""

 override def log(successEvent: SqlSuccessEvent): Unit = ()

 val dataSource = new org.sqlite.SQLiteDataSource()

 dataSource.setUrl(s"jdbc:sqlite:./vegetables.db")

 val repo = Repo[Vegetable, Vegetable, Long]

 repo.insert(Vegetable(5, "cucumber"))

 println(repo.findById(5))

https://github.com/lolgab/scala-native-jdbc

Sqlite with Magnum and JDBC reimplementation

https://github.com/lolgab/scala-native-jdbc

 val repo = Repo[Vegetable, Vegetable, Long]

 repo.insert(Vegetable(5, "cucumber"))

 println(repo.findById(5))

q gg q gg

 override def exceptionMsg(exceptionEvent: SqlExceptionEvent): String = ""

 override def log(successEvent: SqlSuccessEvent): Unit = ()

 val dataSource = new org.sqlite.SQLiteDataSource()

 dataSource.setUrl(s"jdbc:sqlite:./vegetables.db")

 connect(Transactor(dataSource, sqlLogger)):

 sql"""

 CREATE TABLE IF NOT EXISTS vegetable (

 id INTEGER PRIMARY KEY,

 description TEXT NOT NULL

);

 """.update.run()

https://github.com/lolgab/scala-native-jdbc

Alfred integration
Alfred is the OG productivity app

It has workflows that can invoke commands, and rudimentary JSON protocol

It’s JSON, so your choices in Scala are in the low hundreds

> sniper alfred prepare "n" | jq

{

 "items": [

 {

 "title": "scala3",

 "arg": "",

 "valid": false,

 "autocomplete": "new scala3 "

 },

 {

 "title": "c",

 "arg": "",

 "valid": false,

 "autocomplete": "new c "

 },

> sniper alfred prepare "n scala3 Hello, LSUG" | jq

{

 "items": [

 {

 "title": "Create snippet named `Hello, LSUG` using template `scala3`",

 "arg": "new:scala3:Hello, LSUG",

 "valid": true

 }

]

}

Alfred integration

Alfred integration
All the logic is in the Sniper itself

Alfred’s workflow is a pretty static XML file

Embed it!

And then dump it directly out of the CLI:

Alfred will open and install the workflow!

//> using resourceDir ./resources

//> using nativeEmbedResources

sniper alfred workflow > Sniper.alfredworkflow && open Sniper.alfredworkflow

Model Context Protocol server with mcp

https://github.com/indoorvivants/mcp

//> using dep com.indoorvivants::mcp-quick::0.1.3

import mcp.*

@main def hello =

 val mcp = MCPBuilder

 .create()

 .handle(initialize): req =>

 InitializeResult(

 capabilities =

 ServerCapabilities(tools = Some(ServerCapabilities.Tools())),

 protocolVersion = req.protocolVersion,

 serverInfo = Implementation("scala-mcp", "0.0.1")

)

 .run(SyncTransport.default)

end hello

To integrate with Claude, Cursor, etc.

https://github.com/indoorvivants/mcp

Distribution

Distribution
Distributing self-contained binaries is very easy compared to JVM

applications

Usually there are two problems:

1. How to build for all platforms

2. Where to put the binaries

3. What to do with platforms that insist on dynamic linking and

building from source.

Distribution
Distributing self-contained binaries is very easy compared to JVM

applications

Usually there are two problems:

1. How to build for all platforms

2. Where to put the binaries

3. What to do with platforms that insist on dynamic linking and

building from source. Put fingers in your ears, scream, and wait

for them to go away

Distribute via Github
At the moment Github Actions is hard to beat

Free runners for all major OSes and architectures

Automatic releases, uploading binaries to release assets

Use my template to get started:

https://github.com/indoorvivants/scala-native-binary-template

Includes the entire release pipeline for all supported platforms.

Platform Intel Arm64

Linux ✅ ✅

MacOS ✅ ✅

Windows ✅ ❌

https://github.com/indoorvivants/scala-native-binary-template

Distribute via Github

Use my template to get started:

https://github.com/indoorvivants/scala-native-binary-template

https://github.com/indoorvivants/scala-native-binary-template

Distribute via Coursier
Coursier is a dependency manager for Scala that powers Mill, SBT, and Scala CLI

It has a lesser known feature for distributing JVM and Native applications

Your app has to be published to Maven Central or a compatible repository

There are built-in registries at https://github.com/coursier/apps/ for established

applications

You can define "channels" for your app distribution in JSON format

https://github.com/coursier/apps/

Distribute via Coursier

i.json

Deploy this file somewhere, e.g. https://cs.indoorvivants.com/i.json , and then run:

cs install sniper --channel

https://cs.indoorvivants.com/i.json

 "sniper": {

 "repositories": ["central"],

 "dependencies": ["com.indoorvivants:sniper_native0.5_3:latest.stable"],

 "launcherType": "scala-native",

 "prebuiltBinaries": {

 "x86_64-pc-linux": "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-x86_64-p

 "x86_64-pc-win32": "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-x86_64-p

 "x86_64-apple-darwin": "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-x86_

 "aarch64-apple-darwin": "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-aar

 }

 },

Distribute via Coursier

i.json

Deploy this file somewhere, e.g. https://cs.indoorvivants.com/i.json , and then run:

cs install sniper --channel

https://cs.indoorvivants.com/i.json

 "dependencies": ["com.indoorvivants:sniper_native0.5_3:latest.stable"],

 "sniper": {

 "repositories": ["central"],

 "launcherType": "scala-native",

 "prebuiltBinaries": {

 "x86_64-pc-linux": "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-x86_64-p

 "x86_64-pc-win32": "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-x86_64-p

 "x86_64-apple-darwin": "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-x86_

 "aarch64-apple-darwin": "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-aar

 }

 },

Distribute via Coursier

i.json

Deploy this file somewhere, e.g. https://cs.indoorvivants.com/i.json , and then run:

cs install sniper --channel

https://cs.indoorvivants.com/i.json

 "x86_64-pc-linux": "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-x86_64-p

 "x86_64-pc-win32": "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-x86_64-p

 "x86_64-apple-darwin": "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-x86_

 "aarch64-apple-darwin": "https://github.com/indoorvivants/sniper/releases/download/v${version}/sniper-aar

 }

 "sniper": {

 "repositories": ["central"],

 "dependencies": ["com.indoorvivants:sniper_native0.5_3:latest.stable"],

 "launcherType": "scala-native",

 "prebuiltBinaries": {

 },

Distribute via homebrew
Homebrew is the de-facto package manager for MacOS, and is gaining traction

on Linux

It has native support for "taps" – specially named Github repositories where

you can put your "formulas"

Mine is at https://github.com/indoorvivants/homebrew-tap

brew install indoorvivants/tap/sniper

https://github.com/indoorvivants/homebrew-tap

Distribute via homebrew
Formulas are defined in Ruby

We can use pre-defined binaries, or build from source

You can run the formula directly brew install ./sniper.rb && brew

test sniper

class Sniper < Formula

 desc "Snippet management tool"

 # ...

 resource "binary" do

 on_arm do

 on_macos do

 url "https://github.com/keynmol/sniper/releases/download/v#{_version}/sniper-aarch6

 end

 on_linux do

 url "https://github.com/keynmol/sniper/releases/download/v#{_version}/sniper-aarch6

 end

end

Closing thoughts

It’s still Scala after all

It is remarkable that the entire project could well be a Scala JVM

application

Just change some dependencies, and remove the single "native" line:

val isTTY = scalanative.posix.unistd.isatty(1) == 1

It is possible to do so much with the libraries and JDK implementations

that are already available

The ecosystem is rich, growing, and yearns for users

Conclusion
The best time to start building CLIs in Scala Native is now

Don’t sit around waiting for something to be production ready – you are the

production, you make that call

Ecosystem is rich, growing, and yearns for users

Scala Native itself desperately needs contributors:

Make optimiser much, much faster

We need incremental builds

JDK classes missing (VERY IMPORTANT NOTE)

https://scala-native.org/en/stable/contrib/contributing.html#very-important-notice-about-javalib

Happy building!
Scala Native https://scala-native.org/en/stable/

Sniper https://github.com/indoorvivants/sniper

Blog https://blog.indoorvivants.com/

Slides https://slides.indoorvivants.com/clis-with-scala-native

Ask your company to sponsor Scala Center:

https://scala.epfl.ch/corporate-membership.html

https://scala-native.org/en/stable/
https://github.com/indoorvivants/sniper
https://blog.indoorvivants.com/
https://slides.indoorvivants.com/clis-with-scala-native
https://scala.epfl.ch/corporate-membership.html

