
Tree Sitting will continue until

Scala highlighting improves
Anton Sviridov, Scala Days 2025

Tree Sitting will continue until Scala highlighting improves

NOW WITH AI
Anton Sviridov, Scala Days 2025

About me

Worked with Scala since 2014

Advocated for Scala everywhere for

years

Maintainer and contributor to Scala

Native and Scala.js ecosystem, tools,

and libraries

Run a Scala-centric blog

Github: keynmol

Twitter: velvetbaldmime

Bluesky: @indoorvivants.com

https://blog.indoorvivants.com

https://github.com/keynmol
https://twitter.com/velvetbaldmime
https://bsky.app/profile/indoorvivants.com
https://blog.indoorvivants.com/

Slides and code

Code

https://github.com/keynmol/scala-

treesitter-highlighting

Slides

https://slides.indoorvivants.com/scala-

days-2025

https://github.com/keynmol/scala-treesitter-highlighting
https://github.com/keynmol/scala-treesitter-highlighting
https://slides.indoorvivants.com/scala-days-2025
https://slides.indoorvivants.com/scala-days-2025

Motivation
There are only 4 big issues our industry should be

concerned with.

Motivation

Security

There are only 4 big issues our industry should be

concerned with.

Motivation

Security

Scalability

There are only 4 big issues our industry should be

concerned with.

Motivation

Security

Scalability

Maintainbility

There are only 4 big issues our industry should be

concerned with.

Motivation

Security

Scalability

Maintainbility

Making sure code snippets are pretty and

colourful

There are only 4 big issues our industry should be

concerned with.

Motivation

This didn’t start as a talk

An in-browser webapp with Scala.js first

It worked well and gave me inspiration to explore

other platforms

Native first, then JVM

It was a journey, one I want to take you on

What’s in it for you, the
Scala developer?

Learn a bit about Tree Sitter

See Scala on all three platforms

Learn a useful pattern for building interfaces in Scala 3

Nourish or uncover a deeply destructive obsession with

syntax highlighting

Syntax highlighting
Structure of the program through the usage of colours and text

decorators

Performed without typechecking or involving the compiler

Speeds up comprehension by involving the subconscious

Syntax highlighting

Even in a particularly egregious case, compare

with

if text.trim.nonEmpty then

 positionedTokens += PositionedToken(

 text,

 x = lineWidth,

 y = height,

 color = color

)

 lineWidth += ((!extents).width).max((!baseExtents).width * text.length)

else lineWidth += text.count(_.isWhitespace) * (!baseExtents).width

if text.trim.nonEmpty then

 positionedTokens += PositionedToken(

 text,

 x = lineWidth,

 y = height,

 color = color

)

 lineWidth += ((!extents).width).max((!baseExtents).width * text.length)

else lineWidth += text.count(_.isWhitespace) * (!baseExtents).width

Highlighting with regular
expressions

Most common approach

Most commonly using Highlight.js

Regexes are used

Fast, easy to write, small code in the browser

Struggles with ambiguity, limited context, "soft" keywords, etc.

It served (and will continue to serve) us well enough – but in some

cases we can do better, much better.

Tree Sitter

A comprehensive parsing system

Authoring grammars in JS

Queries for syntax tree tagging and processing

CLI tools and templates

Testing infrastructure

Lots of languages have high fidelity grammars

Used on Github for syntax highlighting

Used by companies doing static analysis

https://tree-sitter.github.io/tree-sitter/

https://tree-sitter.github.io/tree-sitter/

Tree Sitter: in editors

Some popular editors are either built with Tree Sitter at the core, or

support it natively

Neovim

Zed

Helix

Emacs

Tree Sitter: in editors

Some popular editors are either built with Tree Sitter at the core, or

support it natively.

Neovim

Zed

Helix

Emacs Sorry, I meant popular

Tree Sitter: grammar

Grammars are defined using a JavaScript DSL.

1 enum_definition: $ =>

2 seq(

3 repeat($.annotation),

4 "enum",

5 $._class_constructor,

6 field("extend", optional($.extends_clause)),

7 field("derive", optional($.derives_clause)),

8 field("body", $.enum_body),

9),

Tree Sitter: queries

Queries use a Scheme-like language to deeply match and label

particular syntax nodes:

Tree Sitter API allows extracting all the matched nodes along with

their labels.

Labels have no meaning in Tree Sitter itself – different applications

use different label sets and interpret them as they wish.

(call_expression

 function: (operator_identifier) @function.call)

Tree Sitter: interface

Grammar definition is verified and then a gigantic C file can be

generated from it. It uses C runtime to parse text.

Generated C parser can be compiled to WASM, usable on the

Web

There are some first-class bindings for popular languages

Tree sitter: learn more

Tree Sitter has a lot more to offer. Watch this video from Max Brunsfield.

Watch on

"Tree-sitter - a new parsing system for programmin"Tree-sitter - a new parsing system for programmin……
ShareShare

https://www.youtube.com/watch?v=Jes3bD6P0To&embeds_referring_euri=http%3A%2F%2Flocalhost%3A12445%2F
https://www.youtube.com/watch?v=Jes3bD6P0To
https://www.youtube.com/channel/UC_QIfHvN9auy2CoOdSfMWDw?embeds_referring_euri=http%3A%2F%2Flocalhost%3A12445%2F

The Project

✅ Scala.js frontend application

✅ Scala Native CLI

🚧 Scala JVM backend

Here’s the state of it as of this presentation:

The Project: Scala.js frontend

High level overview:

Using Vite as a bundler and build tool

Tree Sitter has special JavaScript bindings specifically designed to

work with WASM parsers

Scala.js and Laminar for the frontend interactivity

https://github.com/tree-sitter/tree-sitter/tree/master/lib/binding_web

The Project: loading WASM parser
1 import TreeSitter from "web-tree-sitter";

2 import init from "web-tree-sitter/tree-sitter.wasm?init&url";

3 import initScala from "/tree-sitter-scala.wasm?init&url";

4

5 let parser = await (async () => {

6 await TreeSitter.init({

7 locateFile(scriptName, scriptDirectory) {

8 return init;

9 },

10 });

11 const parser = new TreeSitter();

12 const Lang = await TreeSitter.Language.load(initScala);

13 parser.setLanguage(Lang);

14 return parser;

15 })();

16

17 export default parser;

The Project: loading WASM parser

2 import init from "web-tree-sitter/tree-sitter.wasm?init&url";

3 import initScala from "/tree-sitter-scala.wasm?init&url";

1 import TreeSitter from "web-tree-sitter";

4

5 let parser = await (async () => {

6 await TreeSitter.init({

7 locateFile(scriptName, scriptDirectory) {

8 return init;

9 },

10 });

11 const parser = new TreeSitter();

12 const Lang = await TreeSitter.Language.load(initScala);

13 parser.setLanguage(Lang);

14 return parser;

15 })();

16

17 export default parser;

The Project: loading WASM parser

6 await TreeSitter.init({

7 locateFile(scriptName, scriptDirectory) {

8 return init;

9 },

10 });

1 import TreeSitter from "web-tree-sitter";

2 import init from "web-tree-sitter/tree-sitter.wasm?init&url";

3 import initScala from "/tree-sitter-scala.wasm?init&url";

4

5 let parser = await (async () => {

11 const parser = new TreeSitter();

12 const Lang = await TreeSitter.Language.load(initScala);

13 parser.setLanguage(Lang);

14 return parser;

15 })();

16

17 export default parser;

The Project: loading WASM parser

11 const parser = new TreeSitter();

12 const Lang = await TreeSitter.Language.load(initScala);

13 parser.setLanguage(Lang);

14 return parser;

1 import TreeSitter from "web-tree-sitter";

2 import init from "web-tree-sitter/tree-sitter.wasm?init&url";

3 import initScala from "/tree-sitter-scala.wasm?init&url";

4

5 let parser = await (async () => {

6 await TreeSitter.init({

7 locateFile(scriptName, scriptDirectory) {

8 return init;

9 },

10 });

15 })();

16

17 export default parser;

The Project: loading WASM parser

17 export default parser;

1 import TreeSitter from "web-tree-sitter";

2 import init from "web-tree-sitter/tree-sitter.wasm?init&url";

3 import initScala from "/tree-sitter-scala.wasm?init&url";

4

5 let parser = await (async () => {

6 await TreeSitter.init({

7 locateFile(scriptName, scriptDirectory) {

8 return init;

9 },

10 });

11 const parser = new TreeSitter();

12 const Lang = await TreeSitter.Language.load(initScala);

13 parser.setLanguage(Lang);

14 return parser;

15 })();

16

The Project: binding to web Tree Sitter

Now that we have the parser on hand, how do we work with it in Scala?

We take a look at the exposed API, and come up with this:

I can already see that Native and JVM bindings won’t look anything like that! Time to step back.

1 @js.native

2 @JSImport("/tree-sitter.js", JSImport.Default)

3 private object Parser extends js.Any:

4 def parse(path: String): Tree = js.native

5

6 def getLanguage(): Language = js.native

7

8 @js.native

9 trait Language extends js.Any:

10 def query(source: String): Query = js.native

11

12 @js.native

13 trait Query extends js.Any:

14 def matches(node: Node): Arr[Match] = js.native

15

16 // ...

Tree Sitter interface

Our goal: the highlighting logic will be implemented in a syntactically identical way across platforms

But platforms are different! For example, a Tree Sitter match:

Scala.js

Scala Native

Scala JVM

No shared traits, no simple shared representation, different memory semantics.

1 @js.native

2 trait Match extends js.Any:

3 val name: String = js.native

4 val captures: Arr[Capture] = js.native

1 opaque type TSQueryMatch = CStruct4[uint32_t, uint16_t, uint16_t, Ptr[TSQueryCapture]]

2 // and a bunch of static methods

1 public record QueryMatch(@Unsigned int patternIndex, List<QueryCapture> captures) {}

Tree Sitter interface

If we squint, we can uncover the intrinsic Tree Sitter model as such:

Using abstract extension methods dramatically simplifies the usage.

1 trait TreeSitterInterface:

2 type Tree

3 extension (t: Tree) def rootNode: Node

4 def parse(source: String): Tree

5

6 def getLanguage: Language

7

8 // ...

9

10 type Capture

11 extension (t: Capture)

12 @targetName("capture_name")

13 def name(q: Query): String

14 def node: Node

15

16 type Match

17 extension (t: Match)

18 def captures: Iterable[Capture]

Tree Sitter interface

If we squint, we can uncover the intrinsic Tree Sitter model as such:

Using abstract extension methods dramatically simplifies the usage.

2 type Tree

3 extension (t: Tree) def rootNode: Node

4 def parse(source: String): Tree

1 trait TreeSitterInterface:

5

6 def getLanguage: Language

7

8 // ...

9

10 type Capture

11 extension (t: Capture)

12 @targetName("capture_name")

13 def name(q: Query): String

14 def node: Node

15

16 type Match

17 extension (t: Match)

18 def captures: Iterable[Capture]

Tree Sitter interface

If we squint, we can uncover the intrinsic Tree Sitter model as such:

Using abstract extension methods dramatically simplifies the usage.

10 type Capture

11 extension (t: Capture)

12 @targetName("capture_name")

13 def name(q: Query): String

14 def node: Node

1 trait TreeSitterInterface:

2 type Tree

3 extension (t: Tree) def rootNode: Node

4 def parse(source: String): Tree

5

6 def getLanguage: Language

7

8 // ...

9

15

16 type Match

17 extension (t: Match)

18 def captures: Iterable[Capture]

Tree Sitter interface

If we squint, we can uncover the intrinsic Tree Sitter model as such:

Using abstract extension methods dramatically simplifies the usage.

16 type Match

17 extension (t: Match)

18 def captures: Iterable[Capture]

1 trait TreeSitterInterface:

2 type Tree

3 extension (t: Tree) def rootNode: Node

4 def parse(source: String): Tree

5

6 def getLanguage: Language

7

8 // ...

9

10 type Capture

11 extension (t: Capture)

12 @targetName("capture_name")

13 def name(q: Query): String

14 def node: Node

15

Does this look familiar to anyone?

Tree Sitter interface: Scala.js

Here’s a sample of concrete implementation:

We use opaque types and inline extension methods to hide the

representation semantics of the underlying Tree Sitter API.

1 class TreeSitter(p: Parser.type) extends TreeSitterInterface:

2 // ...

3 override opaque type Capture = p.Capture

4

5 extension (t: Capture)

6 @annotation.targetName("capture_name")

7 override inline def name(q: Query): String = t.name

8 override inline def node = t.node

9 // ...

Tree Sitter interface: generic usage

With this, we can write generic cross-platform algorithms:

The values are dependently typed based on the instance of

TreeSitterInterface – you need to have that in scope for types to align.

1 class HighlightTokenizer[TS <: TreeSitterInterface & Singleton](

2 source: String,

3 highlightQueries: String,

4 treesitter: TS

5):

6 private lazy val tree = treesitter.parse(source)

7 private lazy val lang: treesitter.Language = treesitter.getLanguage

8 private lazy val query = lang.query(highlightQueries)

9 private lazy val matches: Iterable[treesitter.Match] =

10 query.matches(tree.rootNode)

11 // ...

Tree Sitter interface: spiralling out of

control
With this generic Tree Sitter interface we can implement

highlighting logic in a platform-agnostic way

Now that we have this outrageous power, what can we do with

it?

How about a Scala Native CLI that generates PNG images?

Tree Sitter interface: Scala Native

On Native, memory management is getting in the way. Thankfully we’ve adjusted our generic interface

to account for that.

Native interface was the trickiest to get right.

1 class TreeSitter(parser: Ptr[TSParser], language: Ptr[TSLanguage])(using

2 z: Zone

3) extends TreeSitterInterface:

4 // ...

5 override opaque type Capture = Ptr[TSQueryCapture]

6 // ...

7 extension (t: Capture)

8 @annotation.targetName("capture_name")

9 override def name(q: Query) =

10 val length = stackalloc[UInt]()

11 val str = ts_query_capture_name_for_id(q, t.DEREF.index, length)

12 val strZero = stackalloc[CChar](length.DEREF.toInt + 1)

13 scalanative.libc.string.memcpy(strZero, str, !length)

14 strZero(!length) = 0.toByte

15 assert(str != null, "ts_query_capture_name_for_id returned null")

16 fromCString(strZero)

17 // ...

Tree Sitter interface: Scala Native

On Native, memory management is getting in the way. Thankfully we’ve adjusted our generic interface

to account for that.

Native interface was the trickiest to get right.

1 class TreeSitter(parser: Ptr[TSParser], language: Ptr[TSLanguage])(using

2 z: Zone

3) extends TreeSitterInterface:

4 // ...

5 override opaque type Capture = Ptr[TSQueryCapture]

6 // ...

7 extension (t: Capture)

8 @annotation.targetName("capture_name")

9 override def name(q: Query) =

10 val length = stackalloc[UInt]()

11 val str = ts_query_capture_name_for_id(q, t.DEREF.index, length)

12 val strZero = stackalloc[CChar](length.DEREF.toInt + 1)

13 scalanative.libc.string.memcpy(strZero, str, !length)

14 strZero(!length) = 0.toByte

15 assert(str != null, "ts_query_capture_name_for_id returned null")

16 fromCString(strZero)

17 // ...

Tree Sitter interface: Scala Native

On Native, memory management is getting in the way. Thankfully we’ve adjusted our generic interface

to account for that.

Native interface was the trickiest to get right.

5 override opaque type Capture = Ptr[TSQueryCapture]

1 class TreeSitter(parser: Ptr[TSParser], language: Ptr[TSLanguage])(using

2 z: Zone

3) extends TreeSitterInterface:

4 // ...

6 // ...

7 extension (t: Capture)

8 @annotation.targetName("capture_name")

9 override def name(q: Query) =

10 val length = stackalloc[UInt]()

11 val str = ts_query_capture_name_for_id(q, t.DEREF.index, length)

12 val strZero = stackalloc[CChar](length.DEREF.toInt + 1)

13 scalanative.libc.string.memcpy(strZero, str, !length)

14 strZero(!length) = 0.toByte

15 assert(str != null, "ts_query_capture_name_for_id returned null")

16 fromCString(strZero)

17 // ...

Tree Sitter interface: Scala Native

On Native, memory management is getting in the way. Thankfully we’ve adjusted our generic interface

to account for that.

Native interface was the trickiest to get right.

10 val length = stackalloc[UInt]()

11 val str = ts_query_capture_name_for_id(q, t.DEREF.index, length)

12 val strZero = stackalloc[CChar](length.DEREF.toInt + 1)

13 scalanative.libc.string.memcpy(strZero, str, !length)

14 strZero(!length) = 0.toByte

15 assert(str != null, "ts_query_capture_name_for_id returned null")

16 fromCString(strZero)

1 class TreeSitter(parser: Ptr[TSParser], language: Ptr[TSLanguage])(using

2 z: Zone

3) extends TreeSitterInterface:

4 // ...

5 override opaque type Capture = Ptr[TSQueryCapture]

6 // ...

7 extension (t: Capture)

8 @annotation.targetName("capture_name")

9 override def name(q: Query) =

17 // ...

Tree Sitter: using from Scala Native
1 @extern

2 def tree_sitter_scala(): Ptr[TSLanguage] = extern

3

4 val parser = tree_sitter.all.ts_parser_new()

5 val lang = tree_sitter_scala()

6

7 val ts: TreeSitterInterface = TreeSitter(parser, lang)

Tree Sitter: using from Scala Native
1 @extern

2 def tree_sitter_scala(): Ptr[TSLanguage] = extern

3

4 val parser = tree_sitter.all.ts_parser_new()

5 val lang = tree_sitter_scala()

6

7 val ts: TreeSitterInterface = TreeSitter(parser, lang)

Tree Sitter: using from Scala Native

4 val parser = tree_sitter.all.ts_parser_new()

5 val lang = tree_sitter_scala()

1 @extern

2 def tree_sitter_scala(): Ptr[TSLanguage] = extern

3

6

7 val ts: TreeSitterInterface = TreeSitter(parser, lang)

Tree Sitter: using from Scala Native

7 val ts: TreeSitterInterface = TreeSitter(parser, lang)

1 @extern

2 def tree_sitter_scala(): Ptr[TSLanguage] = extern

3

4 val parser = tree_sitter.all.ts_parser_new()

5 val lang = tree_sitter_scala()

6

Tree Sitter interface: sn-bindgen

https://sn-bindgen.indoorvivants.com/

The low-level interface was generated using sn-bindgen

Idiomatic, typesafe, low overhead Scala 3 Native bindings from

header files

It’s hard to work with directly, but it offers high fidelity foundation

https://sn-bindgen.indoorvivants.com/

Scala Native CLI: libraries
Rendering text and producing PNG images is hard

Using C libraries is a bit less hard

We will use Cairo (https://www.cairographics.org/), with sn-bindgen

bindings

Cairo is a 2D graphics library with support for multiple output devices

https://www.cairographics.org/

Scala Native CLI: outline

The process is a bit involved, so here’s a summary:

1. Cairo provides a cairo_text_extents function that gives the pixel

dimensions of a string given particular font

2. Highlighter produces a set of tokens with colours

3. Size and place each token individually on a cairo surface

4. Cut out the exact size of final snippet and move to another cairo surface

All in this file: https://github.com/keynmol/scala-treesitter-

highlighting/blob/main/mod/lib/src/main/scala/ImageGenerator.scala

https://github.com/keynmol/scala-treesitter-highlighting/blob/main/mod/lib/src/main/scala/ImageGenerator.scala
https://github.com/keynmol/scala-treesitter-highlighting/blob/main/mod/lib/src/main/scala/ImageGenerator.scala

Scala Native CLI: markdown

The CLI also supports pre-processing Markdown files, converting

each snippet into an inline HTML block with highlighting already

applied.

Uses cmark – CommonMark reference implementation written in

C

Uses sn-bindgen for the bindings

Code here: https://github.com/keynmol/scala-treesitter-

highlighting/blob/main/mod/lib/src/main/scala/Lib.scala

https://github.com/commonmark/cmark
https://github.com/keynmol/scala-treesitter-highlighting/blob/main/mod/lib/src/main/scala/Lib.scala
https://github.com/keynmol/scala-treesitter-highlighting/blob/main/mod/lib/src/main/scala/Lib.scala

Tree Sitter interface: JVM

On the JVM things are much simpler, as Scala natively understands Java.

This requires JDK22+ because tree-sitter on the JVM just delegates to the same native

implementation.

1 import io.github.treesitter.jtreesitter as JTS

2 // ...

3

4 class TreeSitter(language: JTS.Language) extends TreeSitterInterface:

5 // ...

6 extension (t: Capture)

7 @targetName("capture_name")

8 override def name(q: Query): String = captureName(t)

9 override def node: Node = captureNode(t)

10

11 extension (t: Match)

12 override def captures: Iterable[Capture] = matchCaptures(t)

13 // ...

14 private def captureNode(t: JTS.QueryCapture) = t.node()

15 private def matchCaptures(t: JTS.QueryMatch) = t.captures().asScala

Tree Sitter interface: JVM

On the JVM things are much simpler, as Scala natively understands Java.

This requires JDK22+ because tree-sitter on the JVM just delegates to the same native

implementation.

1 import io.github.treesitter.jtreesitter as JTS

2 // ...

3

4 class TreeSitter(language: JTS.Language) extends TreeSitterInterface:

5 // ...

6 extension (t: Capture)

7 @targetName("capture_name")

8 override def name(q: Query): String = captureName(t)

9 override def node: Node = captureNode(t)

10

11 extension (t: Match)

12 override def captures: Iterable[Capture] = matchCaptures(t)

13 // ...

14 private def captureNode(t: JTS.QueryCapture) = t.node()

15 private def matchCaptures(t: JTS.QueryMatch) = t.captures().asScala

Tree Sitter interface: JVM

On the JVM things are much simpler, as Scala natively understands Java.

This requires JDK22+ because tree-sitter on the JVM just delegates to the same native

implementation.

4 class TreeSitter(language: JTS.Language) extends TreeSitterInterface:

1 import io.github.treesitter.jtreesitter as JTS

2 // ...

3

5 // ...

6 extension (t: Capture)

7 @targetName("capture_name")

8 override def name(q: Query): String = captureName(t)

9 override def node: Node = captureNode(t)

10

11 extension (t: Match)

12 override def captures: Iterable[Capture] = matchCaptures(t)

13 // ...

14 private def captureNode(t: JTS.QueryCapture) = t.node()

15 private def matchCaptures(t: JTS.QueryMatch) = t.captures().asScala

Tree Sitter interface: JVM

On the JVM things are much simpler, as Scala natively understands Java.

This requires JDK22+ because tree-sitter on the JVM just delegates to the same native

implementation.

6 extension (t: Capture)

7 @targetName("capture_name")

8 override def name(q: Query): String = captureName(t)

9 override def node: Node = captureNode(t)

1 import io.github.treesitter.jtreesitter as JTS

2 // ...

3

4 class TreeSitter(language: JTS.Language) extends TreeSitterInterface:

5 // ...

10

11 extension (t: Match)

12 override def captures: Iterable[Capture] = matchCaptures(t)

13 // ...

14 private def captureNode(t: JTS.QueryCapture) = t.node()

15 private def matchCaptures(t: JTS.QueryMatch) = t.captures().asScala

Tree Sitter interface: JVM

On the JVM things are much simpler, as Scala natively understands Java.

This requires JDK22+ because tree-sitter on the JVM just delegates to the same native

implementation.

14 private def captureNode(t: JTS.QueryCapture) = t.node()

15 private def matchCaptures(t: JTS.QueryMatch) = t.captures().asScala

1 import io.github.treesitter.jtreesitter as JTS

2 // ...

3

4 class TreeSitter(language: JTS.Language) extends TreeSitterInterface:

5 // ...

6 extension (t: Capture)

7 @targetName("capture_name")

8 override def name(q: Query): String = captureName(t)

9 override def node: Node = captureNode(t)

10

11 extension (t: Match)

12 override def captures: Iterable[Capture] = matchCaptures(t)

13 // ...

Self-reflection
❌ The Tree Sitter solution requires ~5MB WASM file

✅ It is very generalisable to different languages

✅ It works really well on Native, very portable

❌ On JVM, you have to jump through hoops with native libraries

If we liberate the Scala 3 parser from the rest of Scala 3 compiler

and cross-publish it, we can do much better.

Conclusion

Multiplatform Scala cannot hurt you

You can do great things with Scala Native and Scala.js

Scala’s typesystem can help build abstractions that work across

platforms

Thank you!

