Tree Sitting will continue until
Scala highlighting improves

Anton Sviridov, Scala Days 2025

Tree Sitting will continue until Scala highlighting improves

NOW WITH Al

Anton Sviridov, Scala Days 2025

Posts tagged with Iscala—native

About me , , _
Calling Scala Native from Java using FFM 2025-02-16

httpg;//b[og_indoorviva nts.com Let's point Java's newfangled foreign function and memory interface at a C
"""""""""""""""""""""""""" portal into a Scala Native implementation. Zendaya meme will help explain.

= Worked with Scala since 2014

= Advocated for Scala everywhere for Calling Java from Scala Native via JNI 2025-02-0s

If you like suffering and have some Java libraries you just can't live without,

years your Scala Native application

= Maintainer and contributor to Scala

Native and Scala.js ecosystem, tools, Simple anti-toddler game with Scala Native and F

To save my Slack and Discord from messages sent by a toddler, | need an ¢

and libraries software. Let's build one with Raylib and Scala Native.

= Run a Scala-centric blog

, _ Scala Native and Swift: building Twotm8 MacOS :
Github: keynmol . : . . :
.............. Let's build a Swift Ul (MacOS) client app for Twotm8, using both Swift and

Twotm8 (p.4): Building the backend 2022-03-06

________________________________ Armed with HTTP definitions and Postgres bindings, we build out the backe

https://github.com/keynmol
https://twitter.com/velvetbaldmime
https://bsky.app/profile/indoorvivants.com
https://blog.indoorvivants.com/

Slides and code

Code Slides

https://github.com/keynmol/scala-https://slides.indoorvivants.com/scala-

https://github.com/keynmol/scala-treesitter-highlighting
https://github.com/keynmol/scala-treesitter-highlighting
https://slides.indoorvivants.com/scala-days-2025
https://slides.indoorvivants.com/scala-days-2025

Motivation

There are only 4 big issues our industry should be
concerned with.

Motivation

There are only 4 big issues our industry should be
concerned with.

Security

Motivation

There are only 4 big issues our industry should be
concerned with.

Security
Scalability

Motivation

There are only 4 big issues our industry should be
concerned with.

Security
Scalability
Maintainbility

Motivation

There are only 4 big issues our industry should be
concerned with.

Security

Scalability

Maintainbility

Making sure code snippets are pretty and
colourful

Motivation

= This didn't start as a talk

= An in-browser webapp with Scala.js first

= |t worked well and gave me inspiration to explore
other platforms

= Native first, then JVM

= |t was a journey, one | want to take you on

What's in It for you, the
Scala developer?

Learn a bit about Tree Sitter

See Scala on all three platforms

Learn a useful pattern for building interfaces in Scala 3
Nourish or uncover a deeply destructive obsession with

syntax highlighting

Syntax highlighting
m Structure of the program through the usage of colours and text

decorators

» Performed without typechecking or involving the compiler

m Speeds up comprehension by involving the subconscious

Syntax highlighting
Even in a particularly egregious case, compare

if text.trim.nonEmpty then
positionedTokens += PositionedToken(
text,
x = lineWidth,
y = height,
color = color
)
lineWidth += ((!extents).width).max((!baseExtents).width * text.length)
else linewidth += text.count(_.isWhitespace) * (!baseExtents).width

with

if text.trim.nonEmpty then
positionedTokens += PositionedToken(
text,
x = lineWidth,
y = height,
color = color
)
lineWidth += ((!extents).width).max((!baseExtents).width * text.length)
else linewidth += text.count(_.isWhitespace) * (!baseExtents).width

Highlighting with regular
expressions

= Most common approach

= Most commonly using Highlight.js

m Regexes are used

m [ast, easy to write, small code in the browser

m Struggles with ambiguity, limited context, "soft" keywords, etc.

It served (and will continue to serve) us well enough — but in some
cases we can do better, much better.

Tree Sitter

https://tree-sitter.github.io/tree-sitter/

= A comprehensive parsing system
= Authoring grammars in JS
m Queries for syntax tree tagging and processing
m CLI tools and templates
m Testing infrastructure
m | ots of languages have high fidelity grammars
m Used on Github for syntax highlighting

m Used by companies doing static analysis

https://tree-sitter.github.io/tree-sitter/

Tree Sitter: in editors

Some popular editors are either built with Tree Sitter at the core, or
support it natively

= Neovim

m /ed
= Helix

= Emacs

Tree Sitter: in editors

Some popular editors are either built with Tree Sitter at the core, or
support it natively.

= Neovim
m /ed
= Helix

» Emaces Sorry, | meant popular

Tree Sitter: grammar
Grammars are defined using a JavaScript DSL.

enum_definition: $ =
seq(

repeat($.annotation),
enum”,
$. class_constructor,
field("extend", optional($.extends_clause)),
field("derive", optional($.derives_clause)),
field("body", $.enum_body),

Tree Sitter: queries

Queries use a Scheme-like language to deeply match and label
particular syntax nodes:

(call_expression
function: (operator_identifier) @function.call)

Tree Sitter API allows extracting all the matched nodes along with
their labels.

Labels have no meaning in Tree Sitter itself — different applications
use different label sets and interpret them as they wish.

Tree Sitter: interface

= Grammar definition is verified and then a gigantic C file can be
generated from it. It uses C runtime to parse text.

m (Generated C parser can be compiled to WASM, usable on the
Web

m There are some first-class bindings for popular languages

Tree sitter: learn more

Tree Sitter has a lot more to offer. Watch this video from Max Brunsfield.

Syntax Highlighting - Long Lines

Hunction(a,b) (" €
c=b.createt Lement (*script

typeof modulekkobject " =rtypeafl modul 1
€. tent=a,b. head . appendchild(c) .parenthode. removeChildic) Jvar g=*3,1.1%, ctionta,b){rets
b.prevobjectathis,b] each: function(a){return r.each(this,a)) map: function(a) (return this.pushStaek(r mop(this, function|
this.prevobject | | this,constructor ()} ,pushih,sortic.sort,splice:c.splicel v .extend=r. fn. extend=function() {var 8,b,c,d,e,
B =sgRa(g[b]=a)) jreturn g),r.extend({expando: " jQuery™s (q+Math. random(}). re) AsReady 18, error: function(a) |
Object]® ! <=k, call (a))ik | (b=e(a)) | | (c=1.callib,"constructor”}kbb.constructor ,* f =stypeof chbm.call(c)===n))}, sk
c,deB 1 (wia}){for(cen. Lengthidecide+) 1f (b.call ald],d,ald]}===i1)breakjelse for{d 1n a)if(b.calliald],d,ald]}e==|1)bre
d,e=[1,f=8,g=a.length h=ic;Feg; Feeld=1b{a[f], 1} ,di==hlde,push(a[F]) jreturn e} ,map:function(a,b,c)ivar d,u,f=8,h=[];i
a.8pply(b| | this,d.concat(f.call (arguments)))],e. guidsa, guid=n.guid| |r.guidss e} ,nowDate.now, support o)), " functionssty
b,c,d,0,f, g b 1, K,0,m,n,0,p,8,r 8,1, u= 51211, new Dato,v=a.document,w=8,x=8,y=ha(} ,z=ha() ,A=ha() ,B=function(a,b)(r
eturn-1},3="checked oplay|controls|defer|disabled |hidden| ismap| Loop |multiple |open| reador
RegEXR{™ A" oeme | (T34 =), Genew REGERp ("% eKe®s HoRaman) Rengw RegExp(®A"eKete ([2e=] | "ee¥
RegExp("#: (only| firs ype) (714 ("oMe™s (oven fodd| ({{+=]) (A\E0)R])msMema (T ([4=]]) aMealy
RegExp(*\\\\ ([\\da- a=function(a,b,c) (var d="0x"+b-65536 return dized||c?bid<o?String.f
)}, (dir:"parenthode”] H.call(v.childodes) ,v.childiodes) ,0fv.chi LdNodes. Length) .nodeType)
;4 F(1ok ((b7b, ownar PI) (4FL11 1 =mwtl (=2 oo (0)) IAF(F=LL1) {4 F (==2w) (4F(1 (§=b.gatE Lome
1f("object” | ==b . nodeN: {bute("4d")) Th=k. replace (ba,ca) :b. setAttribute("1d" k=u) ,0rg(a) h=c
alu]=10,a) function ja{ ldset") jtry(roturnl lalb) jeatchic) (return! 1} Finally (b, parenthodedst, @
cb. nodeName . tolowerCane T

trhim, 10} i fu

Lype’ a}}function nala){return function(b){var c=b.nodeMame.tolowerCas
e, fea([],c. Length,b) g=f. Lengthjwhile(g-—) cle«f(g] 16k (c(el=1 (d(o]=c(e])}}}}) }function qale){return you
g/ =*nb&g===g, nodeTypelbdy, documentt Lement ! (n=g,5=n. documentE Lemant ,p= | fn) v | ==nkb (e=n, defaultView) e, top | ==akb (e, addEL
8. 8ppendChiLd(n, createComment ("")), |a. getElemontsByTaghame("+") Langth} } ,¢ . getELement sByClasahane=Y . tont(n. getElomenta
bra.replace(_.aa) jreturn fumnction(a){ver cotundefined® stypeof s.getAttributeNcdebia.getAttributeNods (“4d") return clie
b. getElementsByTaghameTh, getE lamentsByTagName (a) rc.qsa?h. querySelectorAll(a) ivoid 8] : function(a,b){var c,d=(],e=8, fsb.g
mual Lowcagture: »<foption> ¢ /selects",a.querySelectorall (" [maallowcapture®="" 1"} . Lengthika.push(
disabled="disabled' »<option/></salects" var
ban.creatat Lement ("input") jb_satAttribute("type”, "hidden") ,a . appendChi Ld(b) . setAttribute(*name",*D") , . querySalactorAll

. | | 0. msMatchesSelector)) kkfa(function(a) {c. disconnectedMatches . call{a,"=*) s.call{a,"(sl=""]:x"} r.pus| H)} amg.le

unde fined" 1=

https://www.youtube.com/watch?v=Jes3bD6P0To&embeds_referring_euri=http%3A%2F%2Flocalhost%3A12445%2F
https://www.youtube.com/watch?v=Jes3bD6P0To
https://www.youtube.com/channel/UC_QIfHvN9auy2CoOdSfMWDw?embeds_referring_euri=http%3A%2F%2Flocalhost%3A12445%2F

The Project

Here's the state of it as of this presentation:

= Scala.js frontend application
. Scala Native CLI
= =z Scala JVM backend

Scala code highlighter

This highlighter uses the Tree Sitter parser for Scala, compiled to WASM. It is much more accurate than any regex-based engines such as Highlight.js or Textmate grammars

Github | Author | Tree Sitter Scala grammar

Scala code: . ; v

s 1cRequest Theme: | VS Code (light)
.get(uri"https://wttr.in/London?format=4") . K . .
.send (backend) Tree Sitter highlighting:
. body
.right
et package sample

@main def hello = import mcp.*

val mcp = MCPBuilder import upickle.default.x*
.create()
.handleRequest(initialize): req => . .

InitializeResult(import sttp.client4.x*
capabilities = import sttp.client4.upicklejson.default.*

ServerCapabilities(tools = Some(ServerCapabilities.Tools())),
protocolVersion = req.params.protocolVersion,
serverInfo = Imolementation("scala-mco". "0.0.1")

val backend = DefaultSyncBackend()

def weather(city: String) =
basicRequest
.get(uri"https://wttr.in/London?format=4")
.send(backend)
.body
. right
.get

The Project: Scala.js frontend

High level overview:

= Using Vite as a bundler and build tool
= Tree Sitter has special J ga__/_z_:_$_c_:_r_i_|c_>_t_ bindings specifically designed to

work with WASM parsers

m Scala.js and Laminar for the frontend interactivity

https://github.com/tree-sitter/tree-sitter/tree/master/lib/binding_web

The Project: loading WASM parser

import TreeSitter from "web-tree-sitter”;
import init from "web-tree-sitter/tree-sitter.wasm?init&url”;
import initScala from "/tree-sitter-scala.wasm?init&url”;

await TreeSitter.init({
locateFile(scriptName, scriptDirectory) {

1
2
3
4
5 let parser = await (async () = {
6
7
8 return 1init;

9

I
10 });
11 const parser = new TreeSitter();
12 const Lang = await TreeSitter.Language.load(initScala);
13 parser.setLanguage(Lang);
14 return parser;
15 1QO);
16

17 export default parser;

The Project: loading WASM parser

import init from "web-tree-sitter/tree-sitter.wasm?init&url
import initScala from "/tree-sitter-scala.wasm?init&url

The Project: loading WASM parser

await TreeSitter.init
locateFile(scriptName, scriptDirectory
return init

The Project: loading WASM parser

const parser new TreeSitter

const Lang = await TreeSitter.Language.load(initScala
parser.setlLanguage(Lang

return parser

The Project: loading WASM parser

export default

The Project: binding to web Tree Sitter

Now that we have the parser on hand, how do we work with it in Scala?

We take a look at the exposed API, and come up with this:

@js.native
@JSImport("/tree-sitter.js", JSImport.Default)
private object Parser extends js.Any:

def parse(path: String): Tree = js.native

def getlLanguage(): Language = js.native
@js.native
trait Language extends js.Any:

def query(source: String): Query = js.native
@js.native

trait Query extends js.Any:
def matches(node: Node): Arr[Match] = js.native

| can already see that Native and JVM bindings won’t look anything like that! Time to step back.

Tree Sitter interface

Our goal: the highlighting logic will be implemented in a syntactically identical way across platforms
But platforms are different! For example, a Tree Sitter match:

Scala.js

@js.native
trait Match extends js.Any:
val name: String = js.native
val captures: Arr[Capture] = js.native

Scala Native

opaque type TSQueryMatch = CStruct4[uint32_t, uintl6_t, uintl6_t, Ptr[TSQueryCapture]]

Scala JVM

public record QueryMatch(a@Unsigned int patternIndex, List<QueryCapture> captures

No shared traits, no simple shared representation, different memory semantics.

Tree Sitter interface
If we squint, we can uncover the intrinsic Tree Sitter model as such:

trait TreeSitterInterface:
type Tree
extension (t: Tree) def rootNode: Node
def parse(source: String): Tree

def getlanguage: Language

type Capture

extension (t: Capture)
atargetName("capture_name")
def name(q: Query): String
def node: Node

type Match

extension (t: Match)
def captures: Iterable[Capture]

Using abstract extension methods dramatically simplifies the usage.

Tree Sitter interface

If we squint, we can uncover the intrinsic Tree Sitter model as such:

type Tree
extension (t: Tree) def rootNode: Node
def parse(source: String): Tree

Using abstract extension methods dramatically simplifies the usage.

Tree Sitter interface

If we squint, we can uncover the intrinsic Tree Sitter model as such:

type Capture

extension (t: Capture)
atargetName("capture_name")
def name(q: Query): String
def node: Node

Using abstract extension methods dramatically simplifies the usage.

Tree Sitter interface

If we squint, we can uncover the intrinsic Tree Sitter model as such:

type Match
extension (t: Match)
def captures: Iterable[Capture]

Using abstract extension methods dramatically simplifies the usage.

Does this look familiar to anyone?

Entirety of Scala 3 metaprogramming
documentation

A

(D

1)

oI

Tree Sitter interface: Scala.js
Here's a sample of concrete implementation:

class TreeSitter(p: Parser.type) extends TreeSitterInterface:
override opaque type Capture = p.Capture

extension (t: Capture)
@annotation.targetName('capture_name")
override inline def name(q: Query): String = t.name
override inline def node = t.node

We use opaque types and inline extension methods to hide the
representation semantics of the underlying Tree Sitter API.

Tree Sitter interface: generic usage
With this, we can write generic cross-platform algorithms:

class HighlightTokenizer[TS <: TreeSitterInterface & Singleton](
source: String,
highlightQueries: String,
treesitter: TS

private lazy val tree = treesitter.parse(source)

private lazy val lang: treesitter.lLanguage = treesitter.getlLanguage

private lazy val query = lang.query(highlightQueries)

private lazy val matches: Iterable[treesitter.Match] =
query.matches(tree.rootNode)

The values are dependently typed based on the instance of
TreeSitterInterface - you need to have thatin scope for types to align.

Tree Sitter interface: spiralling out of
control

= With this generic Tree Sitter interface we can implement
highlighting logic in a platform-agnostic way

= Now that we have this outrageous power, what can we do with
it?

= How about a Scala Native CLI| that generates PNG images?

Tree Sitter interface: Scala Native

On Native, memory management is getting in the way. Thankfully we've adjusted our generic interface
to account for that.

Native interface was the trickiest to get right.

class TreeSitter(parser: Ptr[TSParser], language: Ptr[TSLanguage])(using
z: Zone
) extends TreeSitterInterface:

override opaque type Capture = Ptr[TSQueryCapture]

extension (t: Capture)

@annotation.targetName('capture_name")

override def name(q: Query) =
val length = stackalloc[UInt]()
val str = ts_query_capture_name_for_id(q, t.DEREF.index, length)
val strZero = stackalloc[CChar](length.DEREF.toInt + 1)
scalanative.libc.string.memcpy(strZero, str, !length)
strZero(!length) = 0.toByte
assert(str = null, "ts_query_capture_name_for_id returned null")
fromCString(strZero)

Tree Sitter interface: Scala Native

On Native, memory management is getting in the way. Thankfully we've adjusted our generic interface
to account for that.

Native interface was the trickiest to get right.

class TreeSitter(parser: Ptr[TSParser], language: Ptr[TSLanguage])(using
Z: Zone

) extends TreeSitterInterface:

Tree Sitter interface: Scala Native

On Native, memory management is getting in the way. Thankfully we've adjusted our generic interface
to account for that.

Native interface was the trickiest to get right.

override opaque type Capture = Ptr[TSQueryCapture]

Tree Sitter interface: Scala Native

On Native, memory management is getting in the way. Thankfully we've adjusted our generic interface
to account for that.

Native interface was the trickiest to get right.

val length = stackalloc[UInt]()

val str = ts_query_capture_name_for_id(q, t.DEREF.index, length)
val strZero = stackalloc[CChar](length.DEREF.toInt + 1)
scalanative.libc.string.memcpy(strZero, str, !length)
strZero(!length) = 0.toByte

assert(str = null, "ts_query_capture_name_for_id returned null")
fromCString(strZero)

Tree Sitter: using from Scala Native

aextern
def tree_sitter_scala(): Ptr[TSLanguage] = extern

val parser = tree_sitter.all.ts_parser_new()
val lang = tree_sitter_scala()

val ts: TreeSitterInterface = TreeSitter(parser, lang)

Tree Sitter: using from Scala Native

aextern
def tree_sitter_scala(): Ptr[TSLanguage] = extern

Tree Sitter: using from Scala Native

val parser = tree_sitter.all.ts_parser_new()
val lang = tree_sitter_scala()

Tree Sitter: using from Scala Native

val ts: TreeSitterInterface = TreeSitter(parser, lang)

Tree Sitter interface: sn-bindgen

https://sn-bindgen.indoorvivants.com/

= The low-level interface was generated using sn-bindgen
m |diomatic, typesafe, low overhead Scala 3 Native bindings from
header files

= |t's hard to work with directly, but it offers high fidelity foundation

https://sn-bindgen.indoorvivants.com/

Scala Native CLI: libraries

= Rendering text and producing PNG images is hard

= Using C libraries is a bit less hard

We will use Cairo (https://www.cairographics.org/), with sn-bindgen

bindings

Cairo is a 2D graphics library with support for multiple output devices

== ||
R R

ycairo

https://www.cairographics.org/

Scala Native CLI: outline

The process is a bit involved, so here's a summary:

1. Cairo provides a cairo_text_extents function that gives the pixel
dimensions of a string given particular font

2. Highlighter produces a set of tokens with colours

3. Size and place each token individually on a cairo surface

4. Cut out the exact size of final snippet and move to another cairo surface

All in this file: https://github.com/keynmol/scala-treesitter-

https://github.com/keynmol/scala-treesitter-highlighting/blob/main/mod/lib/src/main/scala/ImageGenerator.scala
https://github.com/keynmol/scala-treesitter-highlighting/blob/main/mod/lib/src/main/scala/ImageGenerator.scala

Scala Native CLI: markdown

The CLI also supports pre-processing Markdown files, converting
each snippet into an inline HTML block with highlighting already

applied.
= Uses cmark — CommonMark reference implementation written in
C

m Uses sn-bindgen for the bindings

= Code here: https://github.com/keynmol/scala-treesitter-

https://github.com/commonmark/cmark
https://github.com/keynmol/scala-treesitter-highlighting/blob/main/mod/lib/src/main/scala/Lib.scala
https://github.com/keynmol/scala-treesitter-highlighting/blob/main/mod/lib/src/main/scala/Lib.scala

Now that I've found the main file for your "Simple Scala weather MCP" snippet, let me create a

highlighted image of this code for you:

C create_image

Here's the highlighted code for your "Simple Scala weather MCP" server from snippet #56.
This code creates a simple Managed Code Protocol (MCP) server that exposes a weather tool.

17 axr Fanti1irac ~f+thic il armanrntatianr.

Tree Sitter interface: JVM

On the JVM things are much simpler, as Scala natively understands Java.

This requires JDK22+ because tree-sitter on the JVM just delegates to the same native
implementation.

import io.github.treesitter.jtreesitter as JTS

class TreeSitter(language: JTS.Language) extends TreeSitterInterface:

extension (t: Capture)
atargetName("capture_name")
override def name(q: Query): String = captureName(t)
override def node: Node = captureNode(t)

extension (t: Match)
override def captures: Iterable[Capture] = matchCaptures(t)

private def captureNode(t: JTS.QueryCapture)
private def matchCaptures(t: JTS.QueryMatch)

t.node()
t.captures().asScala

Tree Sitter interface: JVM

On the JVM things are much simpler, as Scala natively understands Java.

This requires JDK22+ because tree-sitter on the JVM just delegates to the same native
implementation.

import io.github.treesitter.jtreesitter as JTS

Tree Sitter interface: JVM

On the JVM things are much simpler, as Scala natively understands Java.

This requires JDK22+ because tree-sitter on the JVM just delegates to the same native
implementation.

class TreeSitter(language: JTS.Language) extends TreeSitterInterface:

Tree Sitter interface: JVM

On the JVM things are much simpler, as Scala natively understands Java.

This requires JDK22+ because tree-sitter on the JVM just delegates to the same native
implementation.

extension (t: Capture)
atargetName("capture_name")
override def name(q: Query): String = captureName(t)
override def node: Node = captureNode(t)

Tree Sitter interface: JVM

On the JVM things are much simpler, as Scala natively understands Java.

This requires JDK22+ because tree-sitter on the JVM just delegates to the same native
implementation.

private def captureNode(t: JTS.QueryCapture)
private def matchCaptures(t: JTS.QueryMatch)

t.node()
t.captures().asScala

extension (t: Capture)

@annotation.targetName("capture_name")

override def name(q: Query) =
val length = stackalloc[UInt]()
val str = ts_query_capture_name_for_id(q, t.DEREF.index, length)
val strZero = stackalloc[CChar](length.DEREF.toInt + 1)
scalanative. libc.string.memcpy(strZero, str, !length)
strZero(!length) = 0.toByte
assert(str != null, "ts_query_capture_name_for_id returned null")
fromCString(strZero)

extension (t: Capture)
@annotation.targetName("capture_name")
override def name(q: Query) =

val length = stackalloc[UInt]()

val str = ts_query_capture_name_for_id(q, t.DEREF.index, length)
val strZero = stackalloc[CChar](length.DEREF.toInt + 1)
scalanative. libc.string.memcpy(strZero, str, !length)
strZero(!length) = 0.toByte

assert(str != null, "ts_query_capture_name_for_id returned null")
fromCString(strZero)

extension (t: Capture)
dannotation.targetName("capture_name")
override def name(q: Query) =
val length = stackalloc[UInt]()
val str = ts_query_capture_name_for_id(q, t.DEREF.index, length)

val strZero = stackalloc[CChar](length.DEREF.toInt + 1)
scalanative.libc.string.memcpy(strZero, str, !length)
strZero(!length) = 0.toByte

assert(str !'=null, "ts_query capture_name_for_id returned null")
fromCString(strZero)

Self-reflection
=) The Tree Sitter solution requires ~5MB WASM file

m It is very generalisable to different languages

m It works really well on Native, very portable

= > OnJVM, you have to jump through hoops with native libraries

If we liberate the Scala 3 parser from the rest of Scala 3 compiler
and cross-publish it, we can do much better.

Conclusion

m Multiplatform Scala cannot hurt you
= You can do great things with Scala Native and Scala.js

m Scala’s typesystem can help build abstractions that work across

platforms

Thank you!

