
Anton Sviridov, 21 May 2024 @ Imperial College London

It’s still Scala after all

Introduction to Scala.js

Agenda
• Who am I

• What is Scala.js

• Why choose Scala.js

• What are we building

• Introducing Laminar

• How does JavaScript tooling fit in all of this

• App V1 highlights

• App V2-V3 (🪄🦄 AI 🦄🪄): live demo

• Ecosystem

• Conclusion

Who am I
• Anton Sviridov, keynmol on Github,

velvetbaldmime on Twitter

• Building software for money since 2006 (on and
off)

• Longest tenure was at Disney – a lot of Disney+ is
built on functional Scala

• Currently at Sourcegraph building intelligent code
search in various languages

• Last exposure to JavaScript was around 2008,
didn’t go back since – until Scala.js arrived

• I have a blog with lots of posts about various
Scala projects

https://blog.indoorvivants.com

What is Scala.js
• Optimising compiler from Scala to JavaScript – all modern Scala versions

• Gives you access to all language features, most of Scala standard library, most of
Java standard library

• With exceptions like multi-threading, date/time APIs, cryptography, etc.

• Has rich interop with JavaScript and various module systems (we’ll be doing a live demo of
that)

• Supports various JavaScript dialects

• Mature and battle-tested compiler

Why choose Scala.js?
• If you like Scala, you will love Scala.js – there are no restrictions on language features you

can use! It’s still Scala after all

• Mature, available in all Scala build tools

• Fast incremental linker

• Full access to JavaScript library ecosystem through interop features

• Great IDE support

• All the reasons why you’d choose Scala, with access to all the negatives of JavaScript!

Raw Scala.js
• Motivating example –

creating a simple
counter

• Using DOM APIs from
Scala.js directly

• Very similar to reference
JavaScript

• Very low level – easy to
get lost in callbacks

We’re building a
version of this
app

Generated with
OpenAI

A TODO app with Scala.js

Our project

• As TODO apps go, this one is pretty basic

• But even in V1 it has an extra feature not
found among its competitors – search
similar TODO items as you type

• We’re doing it purely in browser, no
backend, no database

• Main UI library we’ll be using is Laminar

• https://laminar.dev

• Using JS tooling and JS libraries

https://laminar.dev

Motivating example - a simple counter

Laminar

• Laminar is declarative

• Built on primitives like
Var, EventStream,
Signal

• Has lots of quiet syntax
and helpers to keep
programs concise

Laminar
Motivating example - a simple counter

Mutable reactive variable

Creating HTML elements
(<div>)

Adding text to element

Binding events (onClick) to
a callback

Binding a text fragment to
changes in reactive variable

85% of your frontend code
will have nothing to do
with web technologies

This is my (likely incorrect) thesis. Vast majority of the code you write
will be about data manipulation and business logic.

So why not use a great language for that?

Frontend tooling from
JavaScript world

TailwindCSS
• Modern CSS framework

with utility classes

• Adds a whiff of
professionalism to
otherwise abysmal design

• https://tailwindcss.com/

https://tailwindcss.com/

Vite
• Modern backbone of

JavaScript tooling

• Bundling, live reload,
plugins, proxying etc.

• Voted “less likely to be
abandoned within a
month” in the JS build
tools class

• https://vitejs.dev/

https://vitejs.dev/

Getting started
A template for the quickest of
quickstarts

https://github.com/keynmol/
scalajs-scala-cli-vite-template

https://github.com/keynmol/scalajs-scala-cli-vite-template
https://github.com/keynmol/scalajs-scala-cli-vite-template

Building our app

Implementation plan

• Represent data and application state

• Continuously persisting state

• Components breakdown

• Sample components code

• Wiring it all together

Application data
• derives ReadWriter is a

Scala 3 feature to derive a
JSON codec for a case class

• Note TodoItem is only ever
soft deleted

• SearchIndex references IDs
from TodoIndex

Application state
• SearchIndex will be
automatically computed
from TodoIndex

• We need both available to
different components of the
app (e.g. for listing and for
searching)

Persisting state

Persisting state
Generic methods for anything
serialisable into JSON

Browser API for storing data in local storage

This creates a binder that we
can attach to elements –
process will continue until
element is destroyed

Persisting state

• And so our app begins!

• Restore application state

• Create mutable Var

• Bind synchronisation process to the top-level <div> element of the app

Tailwind CSS classes look like this

Var#signal allows reacting to changes

TodoItemList.scala

SimilarTodoItemsWidget.scala
TodoItemForm.scala

TodoItemCard.scala

TodoItemCard

TodoItemCard

Invoke callback
when button is
clicked

Render different button
depending on state

Render item title

Deleted items are 50%
transparent

TodoItemList

• We pass Var if we plan to modify
the state and Signal if we’re only
reading. There are safer way of
doing this, but this will do

• We render a list of elements
using children <— binder

Once we have all of our
individual components,
the app comes together
like this!

Live Demo time!

• Tons of Scala libraries are published for Scala.js and Scala JVM: https://
index.scala-lang.org/search?platforms=sjs1

• Laminar is not the only game in town:

• Use Slinky or scalajs-react if you prefer React

• Use Outwatch or Calico if you prefer pure functional programming

• Play online with https://scribble.ninja/

Scala.js Ecosystem

https://index.scala-lang.org/search?platforms=sjs1
https://index.scala-lang.org/search?platforms=sjs1
https://slinky.dev/
https://github.com/japgolly/scalajs-react
https://scribble.ninja/

• Scala.js is mature and cool

• Laminar is cool

• If you know Scala, you can be
productive immediately

• If you don’t know Scala, it’s an
exceptional vehicle to learn it

• If you know JS, give Scala.js a go, you
already know most of the frontend
tooling and gotchas!

Conclusion

https://github.com/keynmol/scalajs-talk-at-imperial

https://scalajs-talk-at-imperial.fly.dev/
Live version

Code

https://github.com/keynmol/scalajs-talk-at-imperial
https://scalajs-talk-at-imperial.fly.dev/

